This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgtail.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ntrivcvgtail.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| ntrivcvgtail.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | ||
| ntrivcvgtail.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| ntrivcvgtail.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| Assertion | ntrivcvgtail | ⊢ ( 𝜑 → ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgtail.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ntrivcvgtail.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | ntrivcvgtail.3 | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) | |
| 4 | ntrivcvgtail.4 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 5 | ntrivcvgtail.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 7 | ffun | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) | |
| 8 | 6 7 | ax-mp | ⊢ Fun ⇝ |
| 9 | funbrfv | ⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) ) | |
| 10 | 8 3 9 | mpsyl | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
| 11 | 10 4 | eqnetrd | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ) |
| 12 | 3 10 | breqtrrd | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
| 13 | 11 12 | jca | ⊢ ( 𝜑 → ( ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) ) |
| 15 | seqeq1 | ⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( · , 𝐹 ) = seq 𝑀 ( · , 𝐹 ) ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑁 = 𝑀 → ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
| 17 | 16 | neeq1d | ⊢ ( 𝑁 = 𝑀 → ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ↔ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ) ) |
| 18 | 15 16 | breq12d | ⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ↔ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) ) |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑁 = 𝑀 → ( ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ↔ ( ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ↔ ( ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑀 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) ) ) |
| 21 | 14 20 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑁 = 𝑀 ) → ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 23 | 22 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 − 1 ) ∈ 𝑍 ) |
| 24 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑋 ≠ 0 ) |
| 27 | 1 23 25 26 24 | ntrivcvgfvn0 | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ≠ 0 ) |
| 28 | 1 23 24 25 27 | clim2div | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ ( 𝑋 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 29 | funbrfv | ⊢ ( Fun ⇝ → ( seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ ( 𝑋 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) = ( 𝑋 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) ) | |
| 30 | 8 28 29 | mpsyl | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) = ( 𝑋 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 31 | climcl | ⊢ ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → 𝑋 ∈ ℂ ) | |
| 32 | 3 31 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
| 34 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 35 | 34 1 | eleq2s | ⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 36 | 2 35 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 37 | 1 36 5 | prodf | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 38 | 1 | feq2i | ⊢ ( seq 𝑀 ( · , 𝐹 ) : 𝑍 ⟶ ℂ ↔ seq 𝑀 ( · , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
| 39 | 37 38 | sylib | ⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
| 40 | 39 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ∈ ℂ ) |
| 41 | 33 40 26 27 | divne0d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑋 / ( seq 𝑀 ( · , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ≠ 0 ) |
| 42 | 30 41 | eqnetrd | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ≠ 0 ) |
| 43 | 28 30 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ) |
| 44 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 45 | 1 44 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 46 | 45 2 | sselid | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 47 | 46 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 49 | 1cnd | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℂ ) | |
| 50 | 48 49 | npcand | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 51 | 50 | seqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) = seq 𝑁 ( · , 𝐹 ) ) |
| 52 | 51 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) = ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) |
| 53 | 52 | neeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ≠ 0 ↔ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ) ) |
| 54 | 51 52 | breq12d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ↔ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) |
| 55 | 53 54 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ≠ 0 ∧ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq ( ( 𝑁 − 1 ) + 1 ) ( · , 𝐹 ) ) ) ↔ ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) ) |
| 56 | 42 43 55 | mpbi2and | ⊢ ( ( 𝜑 ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) |
| 57 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 58 | uzm1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 59 | 57 58 | syl | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 60 | 21 56 59 | mpjaodan | ⊢ ( 𝜑 → ( ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ≠ 0 ∧ seq 𝑁 ( · , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑁 ( · , 𝐹 ) ) ) ) |