This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit relation is function-like, and with codomain the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrel | ⊢ Rel ⇝ | |
| 2 | climuni | ⊢ ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 4 | 3 | ax-gen | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 5 | 4 | ax-gen | ⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) |
| 6 | dffun2 | ⊢ ( Fun ⇝ ↔ ( Rel ⇝ ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ⇝ 𝑦 ∧ 𝑥 ⇝ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 7 | 1 5 6 | mpbir2an | ⊢ Fun ⇝ |
| 8 | funfn | ⊢ ( Fun ⇝ ↔ ⇝ Fn dom ⇝ ) | |
| 9 | 7 8 | mpbi | ⊢ ⇝ Fn dom ⇝ |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 | elrn | ⊢ ( 𝑦 ∈ ran ⇝ ↔ ∃ 𝑥 𝑥 ⇝ 𝑦 ) |
| 12 | climcl | ⊢ ( 𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ ) | |
| 13 | 12 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ⇝ 𝑦 → 𝑦 ∈ ℂ ) |
| 14 | 11 13 | sylbi | ⊢ ( 𝑦 ∈ ran ⇝ → 𝑦 ∈ ℂ ) |
| 15 | 14 | ssriv | ⊢ ran ⇝ ⊆ ℂ |
| 16 | df-f | ⊢ ( ⇝ : dom ⇝ ⟶ ℂ ↔ ( ⇝ Fn dom ⇝ ∧ ran ⇝ ⊆ ℂ ) ) | |
| 17 | 9 15 16 | mpbir2an | ⊢ ⇝ : dom ⇝ ⟶ ℂ |