This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgfvn0.1 | |- Z = ( ZZ>= ` M ) |
|
| ntrivcvgfvn0.2 | |- ( ph -> N e. Z ) |
||
| ntrivcvgfvn0.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
||
| ntrivcvgfvn0.4 | |- ( ph -> X =/= 0 ) |
||
| ntrivcvgfvn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | ntrivcvgfvn0 | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgfvn0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | ntrivcvgfvn0.2 | |- ( ph -> N e. Z ) |
|
| 3 | ntrivcvgfvn0.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
|
| 4 | ntrivcvgfvn0.4 | |- ( ph -> X =/= 0 ) |
|
| 5 | ntrivcvgfvn0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | fclim | |- ~~> : dom ~~> --> CC |
|
| 7 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 8 | 6 7 | ax-mp | |- Fun ~~> |
| 9 | funbrfv | |- ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) ) |
|
| 10 | 8 3 9 | mpsyl | |- ( ph -> ( ~~> ` seq M ( x. , F ) ) = X ) |
| 11 | 10 | adantr | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( ~~> ` seq M ( x. , F ) ) = X ) |
| 12 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 13 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 14 | 1 13 | eqsstri | |- Z C_ ZZ |
| 15 | 14 2 | sselid | |- ( ph -> N e. ZZ ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> N e. ZZ ) |
| 17 | seqex | |- seq M ( x. , F ) e. _V |
|
| 18 | 17 | a1i | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> seq M ( x. , F ) e. _V ) |
| 19 | 0cnd | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> 0 e. CC ) |
|
| 20 | fveqeq2 | |- ( m = N -> ( ( seq M ( x. , F ) ` m ) = 0 <-> ( seq M ( x. , F ) ` N ) = 0 ) ) |
|
| 21 | 20 | imbi2d | |- ( m = N -> ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` m ) = 0 ) <-> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` N ) = 0 ) ) ) |
| 22 | fveqeq2 | |- ( m = n -> ( ( seq M ( x. , F ) ` m ) = 0 <-> ( seq M ( x. , F ) ` n ) = 0 ) ) |
|
| 23 | 22 | imbi2d | |- ( m = n -> ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` m ) = 0 ) <-> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` n ) = 0 ) ) ) |
| 24 | fveqeq2 | |- ( m = ( n + 1 ) -> ( ( seq M ( x. , F ) ` m ) = 0 <-> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) ) |
|
| 25 | 24 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` m ) = 0 ) <-> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) ) ) |
| 26 | fveqeq2 | |- ( m = k -> ( ( seq M ( x. , F ) ` m ) = 0 <-> ( seq M ( x. , F ) ` k ) = 0 ) ) |
|
| 27 | 26 | imbi2d | |- ( m = k -> ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` m ) = 0 ) <-> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` k ) = 0 ) ) ) |
| 28 | simpr | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` N ) = 0 ) |
|
| 29 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 30 | uztrn | |- ( ( n e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 31 | 29 30 | sylan2 | |- ( ( n e. ( ZZ>= ` N ) /\ ph ) -> n e. ( ZZ>= ` M ) ) |
| 32 | 31 | 3adant3 | |- ( ( n e. ( ZZ>= ` N ) /\ ph /\ ( seq M ( x. , F ) ` n ) = 0 ) -> n e. ( ZZ>= ` M ) ) |
| 33 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( n e. ( ZZ>= ` N ) /\ ph /\ ( seq M ( x. , F ) ` n ) = 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
| 35 | oveq1 | |- ( ( seq M ( x. , F ) ` n ) = 0 -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( 0 x. ( F ` ( n + 1 ) ) ) ) |
|
| 36 | 35 | 3ad2ant3 | |- ( ( n e. ( ZZ>= ` N ) /\ ph /\ ( seq M ( x. , F ) ` n ) = 0 ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( 0 x. ( F ` ( n + 1 ) ) ) ) |
| 37 | peano2uz | |- ( n e. ( ZZ>= ` N ) -> ( n + 1 ) e. ( ZZ>= ` N ) ) |
|
| 38 | 1 | uztrn2 | |- ( ( N e. Z /\ ( n + 1 ) e. ( ZZ>= ` N ) ) -> ( n + 1 ) e. Z ) |
| 39 | 2 37 38 | syl2an | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( n + 1 ) e. Z ) |
| 40 | 5 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 41 | fveq2 | |- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
|
| 42 | 41 | eleq1d | |- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
| 43 | 42 | rspcv | |- ( ( n + 1 ) e. Z -> ( A. k e. Z ( F ` k ) e. CC -> ( F ` ( n + 1 ) ) e. CC ) ) |
| 44 | 40 43 | mpan9 | |- ( ( ph /\ ( n + 1 ) e. Z ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 45 | 39 44 | syldan | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 46 | 45 | ancoms | |- ( ( n e. ( ZZ>= ` N ) /\ ph ) -> ( F ` ( n + 1 ) ) e. CC ) |
| 47 | 46 | mul02d | |- ( ( n e. ( ZZ>= ` N ) /\ ph ) -> ( 0 x. ( F ` ( n + 1 ) ) ) = 0 ) |
| 48 | 47 | 3adant3 | |- ( ( n e. ( ZZ>= ` N ) /\ ph /\ ( seq M ( x. , F ) ` n ) = 0 ) -> ( 0 x. ( F ` ( n + 1 ) ) ) = 0 ) |
| 49 | 34 36 48 | 3eqtrd | |- ( ( n e. ( ZZ>= ` N ) /\ ph /\ ( seq M ( x. , F ) ` n ) = 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) |
| 50 | 49 | 3exp | |- ( n e. ( ZZ>= ` N ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) = 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) ) ) |
| 51 | 50 | adantrd | |- ( n e. ( ZZ>= ` N ) -> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( ( seq M ( x. , F ) ` n ) = 0 -> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) ) ) |
| 52 | 51 | a2d | |- ( n e. ( ZZ>= ` N ) -> ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` n ) = 0 ) -> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = 0 ) ) ) |
| 53 | 21 23 25 27 28 52 | uzind4i | |- ( k e. ( ZZ>= ` N ) -> ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( seq M ( x. , F ) ` k ) = 0 ) ) |
| 54 | 53 | impcom | |- ( ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) /\ k e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ` k ) = 0 ) |
| 55 | 12 16 18 19 54 | climconst | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> seq M ( x. , F ) ~~> 0 ) |
| 56 | funbrfv | |- ( Fun ~~> -> ( seq M ( x. , F ) ~~> 0 -> ( ~~> ` seq M ( x. , F ) ) = 0 ) ) |
|
| 57 | 8 55 56 | mpsyl | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> ( ~~> ` seq M ( x. , F ) ) = 0 ) |
| 58 | 11 57 | eqtr3d | |- ( ( ph /\ ( seq M ( x. , F ) ` N ) = 0 ) -> X = 0 ) |
| 59 | 58 | ex | |- ( ph -> ( ( seq M ( x. , F ) ` N ) = 0 -> X = 0 ) ) |
| 60 | 59 | necon3d | |- ( ph -> ( X =/= 0 -> ( seq M ( x. , F ) ` N ) =/= 0 ) ) |
| 61 | 4 60 | mpd | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |