This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuassen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ⊔ 𝐵 ) ⊔ 𝐶 ) ≈ ( 𝐴 ⊔ ( 𝐵 ⊔ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) | |
| 3 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 5 | 4 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ≈ ( { ∅ } × 𝐴 ) ) |
| 6 | 1oex | ⊢ 1o ∈ V | |
| 7 | snex | ⊢ { ∅ } ∈ V | |
| 8 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑊 ) | |
| 9 | xpexg | ⊢ ( ( { ∅ } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ∈ V ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐵 ) ∈ V ) |
| 11 | xpsnen2g | ⊢ ( ( 1o ∈ V ∧ ( { ∅ } × 𝐵 ) ∈ V ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) ) | |
| 12 | 6 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) ) |
| 13 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) | |
| 14 | 1 8 13 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 15 | entr | ⊢ ( ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ ( { ∅ } × 𝐵 ) ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ 𝐵 ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × ( { ∅ } × 𝐵 ) ) ≈ 𝐵 ) |
| 17 | 16 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ≈ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) |
| 18 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅ | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅ ) |
| 20 | djuenun | ⊢ ( ( 𝐴 ≈ ( { ∅ } × 𝐴 ) ∧ 𝐵 ≈ ( { 1o } × ( { ∅ } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ) | |
| 21 | 5 17 19 20 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ) |
| 22 | snex | ⊢ { 1o } ∈ V | |
| 23 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 24 | xpexg | ⊢ ( ( { 1o } ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ∈ V ) | |
| 25 | 22 23 24 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ∈ V ) |
| 26 | xpsnen2g | ⊢ ( ( 1o ∈ V ∧ ( { 1o } × 𝐶 ) ∈ V ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) ) | |
| 27 | 6 25 26 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) ) |
| 28 | xpsnen2g | ⊢ ( ( 1o ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) | |
| 29 | 6 23 28 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × 𝐶 ) ≈ 𝐶 ) |
| 30 | entr | ⊢ ( ( ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ ( { 1o } × 𝐶 ) ∧ ( { 1o } × 𝐶 ) ≈ 𝐶 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ 𝐶 ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( { 1o } × ( { 1o } × 𝐶 ) ) ≈ 𝐶 ) |
| 32 | 31 | ensymd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ≈ ( { 1o } × ( { 1o } × 𝐶 ) ) ) |
| 33 | indir | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) | |
| 34 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ | |
| 35 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) = ∅ | |
| 36 | 35 | xpeq2i | ⊢ ( { 1o } × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( { 1o } × ∅ ) |
| 37 | xpindi | ⊢ ( { 1o } × ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐶 ) ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) | |
| 38 | xp0 | ⊢ ( { 1o } × ∅ ) = ∅ | |
| 39 | 36 37 38 | 3eqtr3i | ⊢ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ |
| 40 | 34 39 | uneq12i | ⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) = ( ∅ ∪ ∅ ) |
| 41 | un0 | ⊢ ( ∅ ∪ ∅ ) = ∅ | |
| 42 | 40 41 | eqtri | ⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) = ∅ |
| 43 | 33 42 | eqtri | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ |
| 44 | 43 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ ) |
| 45 | djuenun | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∧ 𝐶 ≈ ( { 1o } × ( { 1o } × 𝐶 ) ) ∧ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∩ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ∅ ) → ( ( 𝐴 ⊔ 𝐵 ) ⊔ 𝐶 ) ≈ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) | |
| 46 | 21 32 44 45 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ⊔ 𝐵 ) ⊔ 𝐶 ) ≈ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) |
| 47 | df-dju | ⊢ ( 𝐵 ⊔ 𝐶 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) | |
| 48 | 47 | xpeq2i | ⊢ ( { 1o } × ( 𝐵 ⊔ 𝐶 ) ) = ( { 1o } × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) |
| 49 | xpundi | ⊢ ( { 1o } × ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐶 ) ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) | |
| 50 | 48 49 | eqtri | ⊢ ( { 1o } × ( 𝐵 ⊔ 𝐶 ) ) = ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) |
| 51 | 50 | uneq2i | ⊢ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( 𝐵 ⊔ 𝐶 ) ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) |
| 52 | df-dju | ⊢ ( 𝐴 ⊔ ( 𝐵 ⊔ 𝐶 ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( 𝐵 ⊔ 𝐶 ) ) ) | |
| 53 | unass | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) = ( ( { ∅ } × 𝐴 ) ∪ ( ( { 1o } × ( { ∅ } × 𝐵 ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) ) | |
| 54 | 51 52 53 | 3eqtr4i | ⊢ ( 𝐴 ⊔ ( 𝐵 ⊔ 𝐶 ) ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × ( { ∅ } × 𝐵 ) ) ) ∪ ( { 1o } × ( { 1o } × 𝐶 ) ) ) |
| 55 | 46 54 | breqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ⊔ 𝐵 ) ⊔ 𝐶 ) ≈ ( 𝐴 ⊔ ( 𝐵 ⊔ 𝐶 ) ) ) |