This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of nnadju using ax-rep . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnadjuALT | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 2 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 3 | onadju | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| 5 | carden2b | ⊢ ( ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 7 | nnacl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 +o 𝐵 ) ∈ ω ) | |
| 8 | cardnn | ⊢ ( ( 𝐴 +o 𝐵 ) ∈ ω → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 +o 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |
| 10 | 6 9 | eqtr3d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( card ‘ ( 𝐴 ⊔ 𝐵 ) ) = ( 𝐴 +o 𝐵 ) ) |