This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep , see nnadjuALT . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) Avoid ax-rep . (Revised by BTernaryTau, 2-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnadju | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djueq2 | |- ( x = B -> ( A |_| x ) = ( A |_| B ) ) |
|
| 2 | oveq2 | |- ( x = B -> ( A +o x ) = ( A +o B ) ) |
|
| 3 | 1 2 | breq12d | |- ( x = B -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| B ) ~~ ( A +o B ) ) ) |
| 4 | 3 | imbi2d | |- ( x = B -> ( ( A e. _om -> ( A |_| x ) ~~ ( A +o x ) ) <-> ( A e. _om -> ( A |_| B ) ~~ ( A +o B ) ) ) ) |
| 5 | djueq2 | |- ( x = (/) -> ( A |_| x ) = ( A |_| (/) ) ) |
|
| 6 | oveq2 | |- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
|
| 7 | 5 6 | breq12d | |- ( x = (/) -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| (/) ) ~~ ( A +o (/) ) ) ) |
| 8 | djueq2 | |- ( x = y -> ( A |_| x ) = ( A |_| y ) ) |
|
| 9 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 10 | 8 9 | breq12d | |- ( x = y -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| y ) ~~ ( A +o y ) ) ) |
| 11 | djueq2 | |- ( x = suc y -> ( A |_| x ) = ( A |_| suc y ) ) |
|
| 12 | oveq2 | |- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
|
| 13 | 11 12 | breq12d | |- ( x = suc y -> ( ( A |_| x ) ~~ ( A +o x ) <-> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) |
| 14 | dju0en | |- ( A e. _om -> ( A |_| (/) ) ~~ A ) |
|
| 15 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 16 | 14 15 | breqtrrd | |- ( A e. _om -> ( A |_| (/) ) ~~ ( A +o (/) ) ) |
| 17 | 1oex | |- 1o e. _V |
|
| 18 | djuassen | |- ( ( A e. _om /\ y e. _om /\ 1o e. _V ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) ) |
|
| 19 | 17 18 | mp3an3 | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) ) |
| 20 | enrefg | |- ( A e. _om -> A ~~ A ) |
|
| 21 | nnord | |- ( y e. _om -> Ord y ) |
|
| 22 | ordirr | |- ( Ord y -> -. y e. y ) |
|
| 23 | 21 22 | syl | |- ( y e. _om -> -. y e. y ) |
| 24 | dju1en | |- ( ( y e. _om /\ -. y e. y ) -> ( y |_| 1o ) ~~ suc y ) |
|
| 25 | 23 24 | mpdan | |- ( y e. _om -> ( y |_| 1o ) ~~ suc y ) |
| 26 | djuen | |- ( ( A ~~ A /\ ( y |_| 1o ) ~~ suc y ) -> ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) |
|
| 27 | 20 25 26 | syl2an | |- ( ( A e. _om /\ y e. _om ) -> ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) |
| 28 | entr | |- ( ( ( ( A |_| y ) |_| 1o ) ~~ ( A |_| ( y |_| 1o ) ) /\ ( A |_| ( y |_| 1o ) ) ~~ ( A |_| suc y ) ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| suc y ) ) |
|
| 29 | 19 27 28 | syl2anc | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A |_| suc y ) ) |
| 30 | 29 | ensymd | |- ( ( A e. _om /\ y e. _om ) -> ( A |_| suc y ) ~~ ( ( A |_| y ) |_| 1o ) ) |
| 31 | 17 | enref | |- 1o ~~ 1o |
| 32 | djuen | |- ( ( ( A |_| y ) ~~ ( A +o y ) /\ 1o ~~ 1o ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) |
|
| 33 | 31 32 | mpan2 | |- ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) |
| 34 | 33 | a1i | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) ) ) |
| 35 | nnacl | |- ( ( A e. _om /\ y e. _om ) -> ( A +o y ) e. _om ) |
|
| 36 | nnord | |- ( ( A +o y ) e. _om -> Ord ( A +o y ) ) |
|
| 37 | ordirr | |- ( Ord ( A +o y ) -> -. ( A +o y ) e. ( A +o y ) ) |
|
| 38 | 35 36 37 | 3syl | |- ( ( A e. _om /\ y e. _om ) -> -. ( A +o y ) e. ( A +o y ) ) |
| 39 | dju1en | |- ( ( ( A +o y ) e. _om /\ -. ( A +o y ) e. ( A +o y ) ) -> ( ( A +o y ) |_| 1o ) ~~ suc ( A +o y ) ) |
|
| 40 | 35 38 39 | syl2anc | |- ( ( A e. _om /\ y e. _om ) -> ( ( A +o y ) |_| 1o ) ~~ suc ( A +o y ) ) |
| 41 | nnasuc | |- ( ( A e. _om /\ y e. _om ) -> ( A +o suc y ) = suc ( A +o y ) ) |
|
| 42 | 40 41 | breqtrrd | |- ( ( A e. _om /\ y e. _om ) -> ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) |
| 43 | 34 42 | jctird | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) /\ ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) ) ) |
| 44 | entr | |- ( ( ( ( A |_| y ) |_| 1o ) ~~ ( ( A +o y ) |_| 1o ) /\ ( ( A +o y ) |_| 1o ) ~~ ( A +o suc y ) ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) |
|
| 45 | 43 44 | syl6 | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) ) |
| 46 | entr | |- ( ( ( A |_| suc y ) ~~ ( ( A |_| y ) |_| 1o ) /\ ( ( A |_| y ) |_| 1o ) ~~ ( A +o suc y ) ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) |
|
| 47 | 30 45 46 | syl6an | |- ( ( A e. _om /\ y e. _om ) -> ( ( A |_| y ) ~~ ( A +o y ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) |
| 48 | 47 | expcom | |- ( y e. _om -> ( A e. _om -> ( ( A |_| y ) ~~ ( A +o y ) -> ( A |_| suc y ) ~~ ( A +o suc y ) ) ) ) |
| 49 | 7 10 13 16 48 | finds2 | |- ( x e. _om -> ( A e. _om -> ( A |_| x ) ~~ ( A +o x ) ) ) |
| 50 | 4 49 | vtoclga | |- ( B e. _om -> ( A e. _om -> ( A |_| B ) ~~ ( A +o B ) ) ) |
| 51 | 50 | impcom | |- ( ( A e. _om /\ B e. _om ) -> ( A |_| B ) ~~ ( A +o B ) ) |
| 52 | carden2b | |- ( ( A |_| B ) ~~ ( A +o B ) -> ( card ` ( A |_| B ) ) = ( card ` ( A +o B ) ) ) |
|
| 53 | 51 52 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( card ` ( A +o B ) ) ) |
| 54 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 55 | cardnn | |- ( ( A +o B ) e. _om -> ( card ` ( A +o B ) ) = ( A +o B ) ) |
|
| 56 | 54 55 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( A +o B ) ) |
| 57 | 53 56 | eqtrd | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |