This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative integers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 1-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0srg | ⊢ ( ℂfld ↾s ℕ0 ) ∈ SRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | ringcmn | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) | |
| 3 | 1 2 | ax-mp | ⊢ ℂfld ∈ CMnd |
| 4 | nn0subm | ⊢ ℕ0 ∈ ( SubMnd ‘ ℂfld ) | |
| 5 | eqid | ⊢ ( ℂfld ↾s ℕ0 ) = ( ℂfld ↾s ℕ0 ) | |
| 6 | 5 | submcmn | ⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ℕ0 ) ∈ CMnd ) |
| 7 | 3 4 6 | mp2an | ⊢ ( ℂfld ↾s ℕ0 ) ∈ CMnd |
| 8 | nn0ex | ⊢ ℕ0 ∈ V | |
| 9 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 10 | 5 9 | mgpress | ⊢ ( ( ℂfld ∈ CMnd ∧ ℕ0 ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 11 | 3 8 10 | mp2an | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) |
| 12 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
| 13 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 14 | nn0mulcl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) | |
| 15 | 14 | rgen2 | ⊢ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 |
| 16 | 9 | ringmgp | ⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 17 | 1 16 | ax-mp | ⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 18 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 19 | 9 18 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 21 | 9 20 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 23 | 9 22 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 24 | 19 21 23 | issubm | ⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) ) |
| 25 | 17 24 | ax-mp | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ℕ0 ⊆ ℂ ∧ 1 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 · 𝑦 ) ∈ ℕ0 ) ) |
| 26 | 12 13 15 25 | mpbir3an | ⊢ ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 27 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) = ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) | |
| 28 | 27 | submmnd | ⊢ ( ℕ0 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd ) |
| 29 | 26 28 | ax-mp | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℕ0 ) ∈ Mnd |
| 30 | 11 29 | eqeltrri | ⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd |
| 31 | simpl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℕ0 ) | |
| 32 | 31 | nn0cnd | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑥 ∈ ℂ ) |
| 33 | simprl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℕ0 ) | |
| 34 | 33 | nn0cnd | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑦 ∈ ℂ ) |
| 35 | simprr | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℕ0 ) | |
| 36 | 35 | nn0cnd | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → 𝑧 ∈ ℂ ) |
| 37 | 32 34 36 | adddid | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 38 | 32 34 36 | adddird | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 39 | 37 38 | jca | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 40 | 39 | ralrimivva | ⊢ ( 𝑥 ∈ ℕ0 → ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 41 | nn0cn | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) | |
| 42 | 41 | mul02d | ⊢ ( 𝑥 ∈ ℕ0 → ( 0 · 𝑥 ) = 0 ) |
| 43 | 41 | mul01d | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 · 0 ) = 0 ) |
| 44 | 40 42 43 | jca32 | ⊢ ( 𝑥 ∈ ℕ0 → ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 45 | 44 | rgen | ⊢ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
| 46 | 5 18 | ressbas2 | ⊢ ( ℕ0 ⊆ ℂ → ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 47 | 12 46 | ax-mp | ⊢ ℕ0 = ( Base ‘ ( ℂfld ↾s ℕ0 ) ) |
| 48 | eqid | ⊢ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) = ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) | |
| 49 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 50 | 5 49 | ressplusg | ⊢ ( ℕ0 ∈ V → + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 51 | 8 50 | ax-mp | ⊢ + = ( +g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 52 | 5 22 | ressmulr | ⊢ ( ℕ0 ∈ V → · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 53 | 8 52 | ax-mp | ⊢ · = ( .r ‘ ( ℂfld ↾s ℕ0 ) ) |
| 54 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 55 | 1 54 | ax-mp | ⊢ ℂfld ∈ Mnd |
| 56 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 57 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 58 | 5 18 57 | ress0g | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ℕ0 ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) ) |
| 59 | 55 56 12 58 | mp3an | ⊢ 0 = ( 0g ‘ ( ℂfld ↾s ℕ0 ) ) |
| 60 | 47 48 51 53 59 | issrg | ⊢ ( ( ℂfld ↾s ℕ0 ) ∈ SRing ↔ ( ( ℂfld ↾s ℕ0 ) ∈ CMnd ∧ ( mulGrp ‘ ( ℂfld ↾s ℕ0 ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ℕ0 ( ∀ 𝑦 ∈ ℕ0 ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 61 | 7 30 45 60 | mpbir3an | ⊢ ( ℂfld ↾s ℕ0 ) ∈ SRing |