This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg and nlmtlm . (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmvscn.f | |- F = ( Scalar ` W ) |
|
| nlmvscn.sf | |- .x. = ( .sf ` W ) |
||
| nlmvscn.j | |- J = ( TopOpen ` W ) |
||
| nlmvscn.kf | |- K = ( TopOpen ` F ) |
||
| Assertion | nlmvscn | |- ( W e. NrmMod -> .x. e. ( ( K tX J ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmvscn.f | |- F = ( Scalar ` W ) |
|
| 2 | nlmvscn.sf | |- .x. = ( .sf ` W ) |
|
| 3 | nlmvscn.j | |- J = ( TopOpen ` W ) |
|
| 4 | nlmvscn.kf | |- K = ( TopOpen ` F ) |
|
| 5 | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
|
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 8 | 6 1 7 2 | lmodscaf | |- ( W e. LMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
| 9 | 5 8 | syl | |- ( W e. NrmMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
| 10 | eqid | |- ( dist ` W ) = ( dist ` W ) |
|
| 11 | eqid | |- ( dist ` F ) = ( dist ` F ) |
|
| 12 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 13 | eqid | |- ( norm ` F ) = ( norm ` F ) |
|
| 14 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 15 | eqid | |- ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) |
|
| 16 | eqid | |- ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) |
|
| 17 | simpll | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. NrmMod ) |
|
| 18 | simpr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) |
|
| 19 | simplrl | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` F ) ) |
|
| 20 | simplrr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) |
|
| 21 | 1 6 7 10 11 12 13 14 15 16 17 18 19 20 | nlmvscnlem1 | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 22 | 21 | ralrimiva | |- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 23 | simplrl | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` F ) ) |
|
| 24 | simprl | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` F ) ) |
|
| 25 | 23 24 | ovresd | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) = ( x ( dist ` F ) z ) ) |
| 26 | 25 | breq1d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s <-> ( x ( dist ` F ) z ) < s ) ) |
| 27 | simplrr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
|
| 28 | simprr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) |
|
| 29 | 27 28 | ovresd | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) |
| 30 | 29 | breq1d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) |
| 31 | 26 30 | anbi12d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) |
| 32 | 6 1 7 2 14 | scafval | |- ( ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
| 33 | 32 | ad2antlr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
| 34 | 6 1 7 2 14 | scafval | |- ( ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
| 35 | 34 | adantl | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
| 36 | 33 35 | oveq12d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) ) |
| 37 | 5 | ad2antrr | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> W e. LMod ) |
| 38 | 6 1 14 7 | lmodvscl | |- ( ( W e. LMod /\ x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
| 39 | 37 23 27 38 | syl3anc | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
| 40 | 6 1 14 7 | lmodvscl | |- ( ( W e. LMod /\ z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
| 41 | 37 24 28 40 | syl3anc | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
| 42 | 39 41 | ovresd | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
| 43 | 36 42 | eqtrd | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
| 44 | 43 | breq1d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r <-> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 45 | 31 44 | imbi12d | |- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 46 | 45 | 2ralbidva | |- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 47 | 46 | rexbidv | |- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 48 | 47 | ralbidv | |- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 49 | 22 48 | mpbird | |- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
| 50 | 49 | ralrimivva | |- ( W e. NrmMod -> A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
| 51 | 1 | nlmngp2 | |- ( W e. NrmMod -> F e. NrmGrp ) |
| 52 | ngpms | |- ( F e. NrmGrp -> F e. MetSp ) |
|
| 53 | 51 52 | syl | |- ( W e. NrmMod -> F e. MetSp ) |
| 54 | msxms | |- ( F e. MetSp -> F e. *MetSp ) |
|
| 55 | eqid | |- ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) = ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) |
|
| 56 | 7 55 | xmsxmet | |- ( F e. *MetSp -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
| 57 | 53 54 56 | 3syl | |- ( W e. NrmMod -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
| 58 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 59 | ngpms | |- ( W e. NrmGrp -> W e. MetSp ) |
|
| 60 | 58 59 | syl | |- ( W e. NrmMod -> W e. MetSp ) |
| 61 | msxms | |- ( W e. MetSp -> W e. *MetSp ) |
|
| 62 | eqid | |- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
|
| 63 | 6 62 | xmsxmet | |- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 64 | 60 61 63 | 3syl | |- ( W e. NrmMod -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 65 | eqid | |- ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) |
|
| 66 | eqid | |- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
|
| 67 | 65 66 66 | txmetcn | |- ( ( ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
| 68 | 57 64 64 67 | syl3anc | |- ( W e. NrmMod -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
| 69 | 9 50 68 | mpbir2and | |- ( W e. NrmMod -> .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 70 | 4 7 55 | mstopn | |- ( F e. MetSp -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
| 71 | 53 70 | syl | |- ( W e. NrmMod -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
| 72 | 3 6 62 | mstopn | |- ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 73 | 60 72 | syl | |- ( W e. NrmMod -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 74 | 71 73 | oveq12d | |- ( W e. NrmMod -> ( K tX J ) = ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 75 | 74 73 | oveq12d | |- ( W e. NrmMod -> ( ( K tX J ) Cn J ) = ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 76 | 69 75 | eleqtrrd | |- ( W e. NrmMod -> .x. e. ( ( K tX J ) Cn J ) ) |