This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | scaffval.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| scaffval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| scaffval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| scaffval.a | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | ||
| Assertion | lmodscaf | ⊢ ( 𝑊 ∈ LMod → ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | scaffval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | scaffval.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | scaffval.a | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | 1 2 5 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 8 | 7 | ralrimivva | ⊢ ( 𝑊 ∈ LMod → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
| 9 | 1 2 3 4 5 | scaffval | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 10 | 9 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ↔ ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |
| 11 | 8 10 | sylib | ⊢ ( 𝑊 ∈ LMod → ∙ : ( 𝐾 × 𝐵 ) ⟶ 𝐵 ) |