This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | ||
| nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | ||
| nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | ||
| nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| Assertion | nb3grpr | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 4 | nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 6 | nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 7 | id | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) | |
| 8 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
| 9 | 8 | eleq1i | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) |
| 10 | prcom | ⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } | |
| 11 | 10 | eleq1i | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐶 , 𝐵 } ∈ 𝐸 ) |
| 12 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
| 13 | 12 | eleq1i | ⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 14 | 9 11 13 | 3anbi123i | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 15 | 3anrot | ⊢ ( ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ↔ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) |
| 17 | 16 | a1i | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 18 | 7 17 | biadanii | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 19 | an6 | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
| 22 | 1 2 3 4 5 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |
| 23 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 24 | 4 23 | eqtrdi | ⊢ ( 𝜑 → 𝑉 = { 𝐵 , 𝐶 , 𝐴 } ) |
| 25 | 3anrot | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 26 | 5 25 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) ) |
| 27 | 1 2 3 24 26 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ↔ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) ) |
| 28 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 29 | 4 28 | eqtr4di | ⊢ ( 𝜑 → 𝑉 = { 𝐶 , 𝐴 , 𝐵 } ) |
| 30 | 3anrot | ⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 31 | 5 30 | sylibr | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 32 | 1 2 3 29 31 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 33 | 22 27 32 | 3anbi123d | ⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
| 34 | 1 2 3 4 5 6 | nb3grprlem2 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
| 35 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
| 36 | necom | ⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) | |
| 37 | biid | ⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) | |
| 38 | 35 36 37 | 3anbi123i | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) |
| 39 | 3anrot | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ↔ ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 40 | 38 39 | bitr4i | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ) |
| 41 | 6 40 | sylib | ⊢ ( 𝜑 → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) ) |
| 42 | 1 2 3 24 26 41 | nb3grprlem2 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
| 43 | 3anrot | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) | |
| 44 | necom | ⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) | |
| 45 | biid | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐵 ) | |
| 46 | 36 44 45 | 3anbi123i | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 47 | 43 46 | bitri | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 48 | 6 47 | sylib | ⊢ ( 𝜑 → ( 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 49 | 1 2 3 29 31 48 | nb3grprlem2 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
| 50 | 34 42 49 | 3anbi123d | ⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐶 , 𝐴 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
| 51 | 21 33 50 | 3bitr2d | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐴 ) ) | |
| 53 | 52 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
| 54 | 53 | 2rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ) ) |
| 55 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐵 ) ) | |
| 56 | 55 | eqeq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
| 57 | 56 | 2rexbidv | ⊢ ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ) ) |
| 58 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐺 NeighbVtx 𝑥 ) = ( 𝐺 NeighbVtx 𝐶 ) ) | |
| 59 | 58 | eqeq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
| 60 | 59 | 2rexbidv | ⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) |
| 61 | 54 57 60 | raltpg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
| 62 | 5 61 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐵 ) = { 𝑦 , 𝑧 } ∧ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝐶 ) = { 𝑦 , 𝑧 } ) ) ) |
| 63 | raleq | ⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) | |
| 64 | 63 | bicomd | ⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
| 65 | 4 64 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |
| 66 | 51 62 65 | 3bitr2d | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑦 } ) ( 𝐺 NeighbVtx 𝑥 ) = { 𝑦 , 𝑧 } ) ) |