This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an6 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜏 ) ∧ 𝜂 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ∧ ( 𝜒 ∧ 𝜂 ) ) ) | |
| 2 | an4 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜃 ∧ 𝜏 ) ) ↔ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) ) | |
| 3 | 1 2 | bianbi | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜏 ) ∧ 𝜂 ) ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) ∧ ( 𝜒 ∧ 𝜂 ) ) ) |
| 4 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 5 | df-3an | ⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ↔ ( ( 𝜃 ∧ 𝜏 ) ∧ 𝜂 ) ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ ( ( 𝜃 ∧ 𝜏 ) ∧ 𝜂 ) ) ) |
| 7 | df-3an | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝜂 ) ) ↔ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ) ∧ ( 𝜒 ∧ 𝜂 ) ) ) | |
| 8 | 3 6 7 | 3bitr4i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝜓 ∧ 𝜏 ) ∧ ( 𝜒 ∧ 𝜂 ) ) ) |