This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for nb3grpr . (Contributed by Alexander van der Vekens, 17-Oct-2017) (Revised by AV, 28-Oct-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | ||
| nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | ||
| nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | ||
| nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| Assertion | nb3grprlem2 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 4 | nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 6 | nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 7 | sneq | ⊢ ( 𝑣 = 𝐴 → { 𝑣 } = { 𝐴 } ) | |
| 8 | 7 | difeq2d | ⊢ ( 𝑣 = 𝐴 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ) |
| 9 | preq1 | ⊢ ( 𝑣 = 𝐴 → { 𝑣 , 𝑤 } = { 𝐴 , 𝑤 } ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
| 11 | 8 10 | rexeqbidv | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
| 12 | sneq | ⊢ ( 𝑣 = 𝐵 → { 𝑣 } = { 𝐵 } ) | |
| 13 | 12 | difeq2d | ⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ) |
| 14 | preq1 | ⊢ ( 𝑣 = 𝐵 → { 𝑣 , 𝑤 } = { 𝐵 , 𝑤 } ) | |
| 15 | 14 | eqeq2d | ⊢ ( 𝑣 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
| 16 | 13 15 | rexeqbidv | ⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
| 17 | sneq | ⊢ ( 𝑣 = 𝐶 → { 𝑣 } = { 𝐶 } ) | |
| 18 | 17 | difeq2d | ⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ) |
| 19 | preq1 | ⊢ ( 𝑣 = 𝐶 → { 𝑣 , 𝑤 } = { 𝐶 , 𝑤 } ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑣 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
| 21 | 18 20 | rexeqbidv | ⊢ ( 𝑣 = 𝐶 → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
| 22 | 11 16 21 | rextpg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
| 23 | 5 22 | syl | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
| 24 | 4 3 | jca | ⊢ ( 𝜑 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) |
| 25 | simpl | ⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 26 | difeq1 | ⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ) |
| 28 | 27 | rexeqdv | ⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
| 29 | 25 28 | rexeqbidv | ⊢ ( ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
| 30 | 24 29 | syl | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ↔ ∃ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |
| 31 | preq2 | ⊢ ( 𝑤 = 𝐵 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐵 } ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ) ) |
| 33 | preq2 | ⊢ ( 𝑤 = 𝐶 → { 𝐴 , 𝑤 } = { 𝐴 , 𝐶 } ) | |
| 34 | 33 | eqeq2d | ⊢ ( 𝑤 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
| 35 | 32 34 | rexprg | ⊢ ( ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
| 36 | 35 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
| 37 | preq2 | ⊢ ( 𝑤 = 𝐶 → { 𝐵 , 𝑤 } = { 𝐵 , 𝐶 } ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑤 = 𝐶 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) |
| 39 | preq2 | ⊢ ( 𝑤 = 𝐴 → { 𝐵 , 𝑤 } = { 𝐵 , 𝐴 } ) | |
| 40 | 39 | eqeq2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
| 41 | 38 40 | rexprg | ⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
| 42 | 41 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
| 43 | 42 | 3adant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
| 44 | preq2 | ⊢ ( 𝑤 = 𝐴 → { 𝐶 , 𝑤 } = { 𝐶 , 𝐴 } ) | |
| 45 | 44 | eqeq2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
| 46 | preq2 | ⊢ ( 𝑤 = 𝐵 → { 𝐶 , 𝑤 } = { 𝐶 , 𝐵 } ) | |
| 47 | 46 | eqeq2d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) |
| 48 | 45 47 | rexprg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
| 49 | 48 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
| 50 | 36 43 49 | 3orbi123d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
| 51 | 5 50 | syl | ⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
| 52 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 53 | 52 | a1i | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } ) |
| 54 | 53 | difeq1d | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) ) |
| 55 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
| 56 | necom | ⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) | |
| 57 | diftpsn3 | ⊢ ( ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) | |
| 58 | 55 56 57 | syl2anb | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 59 | 58 | 3adant3 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 60 | 54 59 | eqtrd | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
| 61 | 60 | rexeqdv | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ) ) |
| 62 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 63 | 62 | eqcomi | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
| 64 | 63 | a1i | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } ) |
| 65 | 64 | difeq1d | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) ) |
| 66 | necom | ⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) | |
| 67 | 66 | anbi1i | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 68 | 67 | biimpi | ⊢ ( ( 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 69 | 68 | ancoms | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
| 70 | diftpsn3 | ⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) | |
| 71 | 69 70 | syl | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 72 | 71 | 3adant2 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 73 | 65 72 | eqtrd | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
| 74 | 73 | rexeqdv | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ) ) |
| 75 | diftpsn3 | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) | |
| 76 | 75 | 3adant1 | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 77 | 76 | rexeqdv | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ↔ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) |
| 78 | 61 74 77 | 3orbi123d | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
| 79 | 6 78 | syl | ⊢ ( 𝜑 → ( ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ↔ ( ∃ 𝑤 ∈ { 𝐵 , 𝐶 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐶 , 𝐴 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ { 𝐴 , 𝐵 } ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
| 80 | prcom | ⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 } | |
| 81 | 80 | eqeq2i | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
| 82 | 81 | orbi2i | ⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) |
| 83 | oridm | ⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ↔ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) | |
| 84 | 82 83 | bitr2i | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) |
| 85 | 84 | a1i | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
| 86 | nbgrnself2 | ⊢ 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) | |
| 87 | df-nel | ⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) ↔ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) | |
| 88 | prid2g | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐵 , 𝐴 } ) | |
| 89 | 88 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐵 , 𝐴 } ) |
| 90 | eleq2 | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐵 , 𝐴 } ) ) | |
| 91 | 89 90 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 92 | 91 | con3rr3 | ⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
| 93 | 87 92 | sylbi | ⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) |
| 94 | 86 5 93 | mpsyl | ⊢ ( 𝜑 → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) |
| 95 | biorf | ⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ) ) | |
| 96 | orcom | ⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) | |
| 97 | 95 96 | bitrdi | ⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
| 98 | 94 97 | syl | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ) ) |
| 99 | prid2g | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐶 , 𝐴 } ) | |
| 100 | 99 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐶 , 𝐴 } ) |
| 101 | eleq2 | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐶 , 𝐴 } ) ) | |
| 102 | 100 101 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 103 | 102 | con3rr3 | ⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
| 104 | 87 103 | sylbi | ⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) ) |
| 105 | 86 5 104 | mpsyl | ⊢ ( 𝜑 → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ) |
| 106 | biorf | ⊢ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) |
| 108 | 98 107 | orbi12d | ⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
| 109 | prid1g | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 110 | 109 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 111 | eleq2 | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐴 , 𝐵 } ) ) | |
| 112 | 110 111 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 113 | 112 | con3dimp | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ) |
| 114 | prid1g | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐶 } ) | |
| 115 | 114 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ { 𝐴 , 𝐶 } ) |
| 116 | eleq2 | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ { 𝐴 , 𝐶 } ) ) | |
| 117 | 115 116 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } → 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 118 | 117 | con3dimp | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) |
| 119 | 113 118 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
| 120 | 119 | expcom | ⊢ ( ¬ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
| 121 | 87 120 | sylbi | ⊢ ( 𝐴 ∉ ( 𝐺 NeighbVtx 𝐴 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) ) |
| 122 | 86 5 121 | mpsyl | ⊢ ( 𝜑 → ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
| 123 | ioran | ⊢ ( ¬ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ↔ ( ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∧ ¬ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) | |
| 124 | 122 123 | sylibr | ⊢ ( 𝜑 → ¬ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ) |
| 125 | 124 | 3bior1fd | ⊢ ( 𝜑 → ( ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
| 126 | 85 108 125 | 3bitrd | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐵 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝐶 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐴 } ) ∨ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐴 } ∨ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝐵 } ) ) ) ) |
| 127 | 51 79 126 | 3bitr4rd | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐴 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝑤 } ∨ ∃ 𝑤 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝐶 , 𝑤 } ) ) ) |
| 128 | 23 30 127 | 3bitr4rd | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ ( 𝑉 ∖ { 𝑣 } ) ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 , 𝑤 } ) ) |