This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | ||
| nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | ||
| nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | ||
| nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| Assertion | nb3grpr2 | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 4 | nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 6 | nb3grpr.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 7 | 3anan32 | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
| 9 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
| 10 | 9 | eleq1i | ⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 11 | 10 | biimpi | ⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 12 | 11 | pm4.71i | ⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 13 | 12 | bianass | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 14 | 13 | anbi1i | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
| 15 | anass | ⊢ ( ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
| 17 | 8 16 | bitrdi | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) ) |
| 18 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
| 19 | 18 | eleq1i | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) |
| 20 | 19 | biimpi | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐵 , 𝐴 } ∈ 𝐸 ) |
| 21 | 20 | pm4.71i | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) |
| 22 | 21 | anbi1i | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 23 | df-3an | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ) ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 25 | prcom | ⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } | |
| 26 | 25 | eleq1i | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐶 , 𝐵 } ∈ 𝐸 ) |
| 27 | 26 | biimpi | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 → { 𝐶 , 𝐵 } ∈ 𝐸 ) |
| 28 | 27 | pm4.71i | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) |
| 29 | 28 | anbi2i | ⊢ ( ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 30 | 3anass | ⊢ ( ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ ( { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) | |
| 31 | 29 30 | bitr4i | ⊢ ( ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) |
| 32 | 24 31 | anbi12i | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 33 | an6 | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) | |
| 34 | 32 33 | bitri | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ∧ ( { 𝐴 , 𝐶 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 35 | 17 34 | bitrdi | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
| 36 | 1 2 3 4 5 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |
| 37 | tpcoma | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 } | |
| 38 | 4 37 | eqtrdi | ⊢ ( 𝜑 → 𝑉 = { 𝐵 , 𝐴 , 𝐶 } ) |
| 39 | 3ancoma | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 40 | 5 39 | sylib | ⊢ ( 𝜑 → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
| 41 | 1 2 3 38 40 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) ) |
| 42 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 43 | 4 42 | eqtr4di | ⊢ ( 𝜑 → 𝑉 = { 𝐶 , 𝐴 , 𝐵 } ) |
| 44 | 3anrot | ⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 45 | 5 44 | sylibr | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 46 | 1 2 3 43 45 | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) |
| 47 | 36 41 46 | 3anbi123d | ⊢ ( 𝜑 → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐵 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐴 } ∈ 𝐸 ∧ { 𝐶 , 𝐵 } ∈ 𝐸 ) ) ) ) |
| 48 | 35 47 | bitr4d | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |