This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for nb3grpr . (Contributed by Alexander van der Vekens, 15-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | ||
| nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | ||
| nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | ||
| Assertion | nb3grprlem1 | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nb3grpr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nb3grpr.g | ⊢ ( 𝜑 → 𝐺 ∈ USGraph ) | |
| 4 | nb3grpr.t | ⊢ ( 𝜑 → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | nb3grpr.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 6 | prid1g | ⊢ ( 𝐵 ∈ 𝑌 → 𝐵 ∈ { 𝐵 , 𝐶 } ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 10 | eleq2 | ⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) | |
| 11 | 10 | eqcoms | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ { 𝐵 , 𝐶 } ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 13 | 9 12 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
| 14 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐵 , 𝐴 } ∈ 𝐸 ) ) |
| 15 | prcom | ⊢ { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } | |
| 16 | 15 | a1i | ⊢ ( 𝐺 ∈ USGraph → { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } ) |
| 17 | 16 | eleq1d | ⊢ ( 𝐺 ∈ USGraph → ( { 𝐵 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 18 | 14 17 | bitrd | ⊢ ( 𝐺 ∈ USGraph → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
| 21 | 13 20 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
| 22 | prid2g | ⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐵 , 𝐶 } ) | |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 26 | eleq2 | ⊢ ( { 𝐵 , 𝐶 } = ( 𝐺 NeighbVtx 𝐴 ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) | |
| 27 | 26 | eqcoms | ⊢ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ { 𝐵 , 𝐶 } ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
| 29 | 25 28 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
| 30 | 2 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 31 | prcom | ⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } | |
| 32 | 31 | a1i | ⊢ ( 𝐺 ∈ USGraph → { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } ) |
| 33 | 32 | eleq1d | ⊢ ( 𝐺 ∈ USGraph → ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 34 | 30 33 | bitrd | ⊢ ( 𝐺 ∈ USGraph → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 37 | 29 36 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 38 | 21 37 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) |
| 39 | 1 2 | nbusgr | ⊢ ( 𝐺 ∈ USGraph → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 40 | 3 39 | syl | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } ) |
| 42 | eleq2 | ⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) | |
| 43 | 4 42 | syl | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 45 | vex | ⊢ 𝑣 ∈ V | |
| 46 | 45 | eltp | ⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) |
| 47 | 2 | usgredgne | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → 𝐴 ≠ 𝑣 ) |
| 48 | df-ne | ⊢ ( 𝐴 ≠ 𝑣 ↔ ¬ 𝐴 = 𝑣 ) | |
| 49 | pm2.24 | ⊢ ( 𝐴 = 𝑣 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) | |
| 50 | 49 | eqcoms | ⊢ ( 𝑣 = 𝐴 → ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 51 | 50 | com12 | ⊢ ( ¬ 𝐴 = 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 52 | 48 51 | sylbi | ⊢ ( 𝐴 ≠ 𝑣 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 53 | 47 52 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 54 | 53 | ex | ⊢ ( 𝐺 ∈ USGraph → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 55 | 3 54 | syl | ⊢ ( 𝜑 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐴 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 57 | 56 | com3r | ⊢ ( 𝑣 = 𝐴 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 58 | orc | ⊢ ( 𝑣 = 𝐵 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) | |
| 59 | 58 | 2a1d | ⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 60 | olc | ⊢ ( 𝑣 = 𝐶 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) | |
| 61 | 60 | 2a1d | ⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 62 | 57 59 61 | 3jaoi | ⊢ ( ( 𝑣 = 𝐴 ∨ 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 63 | 46 62 | sylbi | ⊢ ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 64 | 63 | com12 | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 65 | 44 64 | sylbid | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 → ( { 𝐴 , 𝑣 } ∈ 𝐸 → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) ) |
| 66 | 65 | impd | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) → ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 67 | eqid | ⊢ 𝐵 = 𝐵 | |
| 68 | 67 | 3mix2i | ⊢ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) |
| 69 | 5 | simp2d | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
| 70 | eltpg | ⊢ ( 𝐵 ∈ 𝑌 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) | |
| 71 | 69 70 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶 ) ) ) |
| 72 | 68 71 | mpbiri | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 74 | eleq1 | ⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) | |
| 75 | 74 | bicomd | ⊢ ( 𝑣 = 𝐵 → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 77 | 73 76 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 78 | 42 | bicomd | ⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 79 | 4 78 | syl | ⊢ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 81 | 77 80 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐵 ) → 𝑣 ∈ 𝑉 ) |
| 82 | 81 | ex | ⊢ ( 𝜑 → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → 𝑣 ∈ 𝑉 ) ) |
| 84 | 83 | impcom | ⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
| 85 | preq2 | ⊢ ( 𝐵 = 𝑣 → { 𝐴 , 𝐵 } = { 𝐴 , 𝑣 } ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝐵 = 𝑣 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 87 | 86 | eqcoms | ⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 88 | 87 | biimpcd | ⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 89 | 88 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐵 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 90 | 89 | impcom | ⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
| 91 | 84 90 | jca | ⊢ ( ( 𝑣 = 𝐵 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 92 | 91 | ex | ⊢ ( 𝑣 = 𝐵 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 93 | tpid3g | ⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 94 | 93 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 95 | 5 94 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 97 | eleq1 | ⊢ ( 𝑣 = 𝐶 → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) | |
| 98 | 97 | bicomd | ⊢ ( 𝑣 = 𝐶 → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 99 | 98 | adantl | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 100 | 96 99 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 101 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → ( 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑣 ∈ 𝑉 ) ) |
| 102 | 100 101 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 = 𝐶 ) → 𝑣 ∈ 𝑉 ) |
| 103 | 102 | ex | ⊢ ( 𝜑 → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → 𝑣 ∈ 𝑉 ) ) |
| 105 | 104 | impcom | ⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → 𝑣 ∈ 𝑉 ) |
| 106 | preq2 | ⊢ ( 𝐶 = 𝑣 → { 𝐴 , 𝐶 } = { 𝐴 , 𝑣 } ) | |
| 107 | 106 | eleq1d | ⊢ ( 𝐶 = 𝑣 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 108 | 107 | eqcoms | ⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐶 } ∈ 𝐸 ↔ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 109 | 108 | biimpcd | ⊢ ( { 𝐴 , 𝐶 } ∈ 𝐸 → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 110 | 109 | ad2antll | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 = 𝐶 → { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 111 | 110 | impcom | ⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → { 𝐴 , 𝑣 } ∈ 𝐸 ) |
| 112 | 105 111 | jca | ⊢ ( ( 𝑣 = 𝐶 ∧ ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) |
| 113 | 112 | ex | ⊢ ( 𝑣 = 𝐶 → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 114 | 92 113 | jaoi | ⊢ ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 115 | 114 | com12 | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) → ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ) ) |
| 116 | 66 115 | impbid | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) ↔ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) ) ) |
| 117 | 116 | abbidv | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } ) |
| 118 | df-rab | ⊢ { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝑣 ∣ ( 𝑣 ∈ 𝑉 ∧ { 𝐴 , 𝑣 } ∈ 𝐸 ) } | |
| 119 | dfpr2 | ⊢ { 𝐵 , 𝐶 } = { 𝑣 ∣ ( 𝑣 = 𝐵 ∨ 𝑣 = 𝐶 ) } | |
| 120 | 117 118 119 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → { 𝑣 ∈ 𝑉 ∣ { 𝐴 , 𝑣 } ∈ 𝐸 } = { 𝐵 , 𝐶 } ) |
| 121 | 41 120 | eqtrd | ⊢ ( ( 𝜑 ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ) |
| 122 | 38 121 | impbida | ⊢ ( 𝜑 → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) ) ) |