This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power series variable is an element of the base set. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mvrf.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mvrf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mvrcl2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| Assertion | mvrcl2 | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mvrf.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 3 | mvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | mvrf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mvrf.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | mvrcl2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 7 | 1 2 3 4 5 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 8 | 7 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) ∈ 𝐵 ) |