This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | ||
| mvrval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| mvrval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
| Assertion | mvrval2 | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrfval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 2 | mvrfval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 3 | mvrfval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mvrfval.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mvrfval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mvrfval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) | |
| 7 | mvrval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 8 | mvrval2.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
| 9 | 1 2 3 4 5 6 7 | mvrval | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑋 ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝐹 ) = ( ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ‘ 𝐹 ) ) |
| 11 | eqeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ↔ 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ) ) | |
| 12 | 11 | ifbid | ⊢ ( 𝑓 = 𝐹 → if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 13 | eqid | ⊢ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) | |
| 14 | 4 | fvexi | ⊢ 1 ∈ V |
| 15 | 3 | fvexi | ⊢ 0 ∈ V |
| 16 | 14 15 | ifex | ⊢ if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ∈ V |
| 17 | 12 13 16 | fvmpt | ⊢ ( 𝐹 ∈ 𝐷 → ( ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 18 | 8 17 | syl | ⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |
| 19 | 10 18 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑉 ‘ 𝑋 ) ‘ 𝐹 ) = if ( 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) , 1 , 0 ) ) |