This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0z.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnn0z.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnn0z.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mulgz | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0z.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnn0z.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnn0z.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → 𝐺 ∈ Mnd ) |
| 6 | 1 2 3 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |
| 7 | 5 6 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |
| 8 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → 𝐺 ∈ Grp ) | |
| 9 | nn0z | ⊢ ( - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℤ ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℤ ) |
| 11 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → 0 ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | 1 2 13 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 0 ∈ 𝐵 ) → ( - - 𝑁 · 0 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 0 ) ) ) |
| 15 | 8 10 12 14 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( - - 𝑁 · 0 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 0 ) ) ) |
| 16 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 18 | 17 | negnegd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
| 19 | 18 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( - - 𝑁 · 0 ) = ( 𝑁 · 0 ) ) |
| 20 | 1 2 3 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ - 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 0 ) = 0 ) |
| 21 | 5 20 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 0 ) = 0 ) |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 0 ) ) = ( ( invg ‘ 𝐺 ) ‘ 0 ) ) |
| 23 | 3 13 | grpinvid | ⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
| 25 | 22 24 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 0 ) ) = 0 ) |
| 26 | 15 19 25 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |
| 27 | elznn0 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) | |
| 28 | 27 | simprbi | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) |
| 30 | 7 26 29 | mpjaodan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 0 ) = 0 ) |