This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgneg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgneg2.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgneg2.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulgneg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgneg2.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgneg2.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgneg2.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | negeq | ⊢ ( 𝑥 = 0 → - 𝑥 = - 0 ) | |
| 5 | neg0 | ⊢ - 0 = 0 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝑥 = 0 → - 𝑥 = 0 ) |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = 0 → ( - 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 8 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( 0 · 𝑋 ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 10 | negeq | ⊢ ( 𝑥 = 𝑛 → - 𝑥 = - 𝑛 ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑛 → ( - 𝑥 · 𝑋 ) = ( - 𝑛 · 𝑋 ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 14 | negeq | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → - 𝑥 = - ( 𝑛 + 1 ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( - 𝑥 · 𝑋 ) = ( - ( 𝑛 + 1 ) · 𝑋 ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 18 | negeq | ⊢ ( 𝑥 = - 𝑛 → - 𝑥 = - - 𝑛 ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = - 𝑛 → ( - 𝑥 · 𝑋 ) = ( - - 𝑛 · 𝑋 ) ) |
| 20 | oveq1 | ⊢ ( 𝑥 = - 𝑛 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑥 = - 𝑛 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 22 | negeq | ⊢ ( 𝑥 = 𝑁 → - 𝑥 = - 𝑁 ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = 𝑁 → ( - 𝑥 · 𝑋 ) = ( - 𝑁 · 𝑋 ) ) |
| 24 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( - 𝑥 · 𝑋 ) = ( 𝑥 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 26 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 27 | 1 26 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 30 | 1 26 2 | mulg0 | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 31 | 29 30 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝐼 ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 33 | oveq1 | ⊢ ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) | |
| 34 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 35 | 34 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
| 36 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 37 | negdi | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝑛 + 1 ) = ( - 𝑛 + - 1 ) ) | |
| 38 | 35 36 37 | sylancl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - ( 𝑛 + 1 ) = ( - 𝑛 + - 1 ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( - 𝑛 + - 1 ) · 𝑋 ) ) |
| 40 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Grp ) | |
| 41 | nn0negz | ⊢ ( 𝑛 ∈ ℕ0 → - 𝑛 ∈ ℤ ) | |
| 42 | 41 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - 𝑛 ∈ ℤ ) |
| 43 | 1z | ⊢ 1 ∈ ℤ | |
| 44 | znegcl | ⊢ ( 1 ∈ ℤ → - 1 ∈ ℤ ) | |
| 45 | 43 44 | mp1i | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → - 1 ∈ ℤ ) |
| 46 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 47 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 48 | 1 2 47 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( - 𝑛 ∈ ℤ ∧ - 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( - 𝑛 + - 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) ) |
| 49 | 40 42 45 46 48 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 + - 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) ) |
| 50 | 1 2 3 | mulgm1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( - 1 · 𝑋 ) ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 53 | 39 49 52 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 54 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 56 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 57 | 29 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 58 | 1 2 47 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 59 | 55 56 57 58 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 60 | 53 59 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ↔ ( ( - 𝑛 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 61 | 33 60 | imbitrrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 62 | 61 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
| 63 | fveq2 | ⊢ ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) | |
| 64 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝐺 ∈ Grp ) | |
| 65 | nnnegz | ⊢ ( 𝑛 ∈ ℕ → - 𝑛 ∈ ℤ ) | |
| 66 | 65 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → - 𝑛 ∈ ℤ ) |
| 67 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) | |
| 68 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑛 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) ) |
| 69 | 64 66 67 68 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( - - 𝑛 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) ) |
| 70 | id | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) | |
| 71 | 1 2 3 | mulgnegnn | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 72 | 70 29 71 | syl2anr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 73 | 69 72 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ↔ ( 𝐼 ‘ ( - 𝑛 · 𝑋 ) ) = ( 𝐼 ‘ ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
| 74 | 63 73 | imbitrrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 75 | 74 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ → ( ( - 𝑛 · 𝑋 ) = ( 𝑛 · ( 𝐼 ‘ 𝑋 ) ) → ( - - 𝑛 · 𝑋 ) = ( - 𝑛 · ( 𝐼 ‘ 𝑋 ) ) ) ) ) |
| 76 | 9 13 17 21 25 32 62 75 | zindd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 77 | 76 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℤ ) → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |
| 78 | 77 | 3com23 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝑁 · ( 𝐼 ‘ 𝑋 ) ) ) |