This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 20-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulgm1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnncl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgneg.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 1 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ ( 1 · 𝑋 ) ) ) |
| 6 | 4 5 | mp3an2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ ( 1 · 𝑋 ) ) ) |
| 7 | 1 2 | mulg1 | ⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 1 · 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( - 1 · 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) |