This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnegnn.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | mulgnegnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulg1.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulg1.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnegnn.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 5 | 4 | negnegd | ⊢ ( 𝑁 ∈ ℕ → - - 𝑁 = 𝑁 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → - - 𝑁 = 𝑁 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) ) |
| 9 | nnnegz | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 12 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) | |
| 13 | 1 10 11 3 2 12 | mulgval | ⊢ ( ( - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
| 14 | 9 13 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) ) |
| 15 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 16 | negeq0 | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) | |
| 17 | 16 | necon3abid | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
| 18 | 4 17 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≠ 0 ↔ ¬ - 𝑁 = 0 ) ) |
| 19 | 15 18 | mpbid | ⊢ ( 𝑁 ∈ ℕ → ¬ - 𝑁 = 0 ) |
| 20 | 19 | iffalsed | ⊢ ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) |
| 21 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 22 | 21 | renegcld | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ ) |
| 23 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 24 | 21 | lt0neg2d | ⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ - 𝑁 < 0 ) ) |
| 25 | 23 24 | mpbid | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 < 0 ) |
| 26 | 0re | ⊢ 0 ∈ ℝ | |
| 27 | ltnsym | ⊢ ( ( - 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) | |
| 28 | 26 27 | mpan2 | ⊢ ( - 𝑁 ∈ ℝ → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
| 29 | 22 25 28 | sylc | ⊢ ( 𝑁 ∈ ℕ → ¬ 0 < - 𝑁 ) |
| 30 | 29 | iffalsed | ⊢ ( 𝑁 ∈ ℕ → if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
| 31 | 20 30 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → if ( - 𝑁 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < - 𝑁 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 𝑁 ) , ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
| 33 | 14 32 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - - 𝑁 ) ) ) |
| 34 | 1 10 2 12 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝐼 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) ) |
| 36 | 8 33 35 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( 𝑁 · 𝑋 ) ) ) |