This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgneg2.b | |- B = ( Base ` G ) |
|
| mulgneg2.m | |- .x. = ( .g ` G ) |
||
| mulgneg2.i | |- I = ( invg ` G ) |
||
| Assertion | mulgneg2 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgneg2.b | |- B = ( Base ` G ) |
|
| 2 | mulgneg2.m | |- .x. = ( .g ` G ) |
|
| 3 | mulgneg2.i | |- I = ( invg ` G ) |
|
| 4 | negeq | |- ( x = 0 -> -u x = -u 0 ) |
|
| 5 | neg0 | |- -u 0 = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( x = 0 -> -u x = 0 ) |
| 7 | 6 | oveq1d | |- ( x = 0 -> ( -u x .x. X ) = ( 0 .x. X ) ) |
| 8 | oveq1 | |- ( x = 0 -> ( x .x. ( I ` X ) ) = ( 0 .x. ( I ` X ) ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = 0 -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( 0 .x. X ) = ( 0 .x. ( I ` X ) ) ) ) |
| 10 | negeq | |- ( x = n -> -u x = -u n ) |
|
| 11 | 10 | oveq1d | |- ( x = n -> ( -u x .x. X ) = ( -u n .x. X ) ) |
| 12 | oveq1 | |- ( x = n -> ( x .x. ( I ` X ) ) = ( n .x. ( I ` X ) ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( x = n -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u n .x. X ) = ( n .x. ( I ` X ) ) ) ) |
| 14 | negeq | |- ( x = ( n + 1 ) -> -u x = -u ( n + 1 ) ) |
|
| 15 | 14 | oveq1d | |- ( x = ( n + 1 ) -> ( -u x .x. X ) = ( -u ( n + 1 ) .x. X ) ) |
| 16 | oveq1 | |- ( x = ( n + 1 ) -> ( x .x. ( I ` X ) ) = ( ( n + 1 ) .x. ( I ` X ) ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) |
| 18 | negeq | |- ( x = -u n -> -u x = -u -u n ) |
|
| 19 | 18 | oveq1d | |- ( x = -u n -> ( -u x .x. X ) = ( -u -u n .x. X ) ) |
| 20 | oveq1 | |- ( x = -u n -> ( x .x. ( I ` X ) ) = ( -u n .x. ( I ` X ) ) ) |
|
| 21 | 19 20 | eqeq12d | |- ( x = -u n -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) |
| 22 | negeq | |- ( x = N -> -u x = -u N ) |
|
| 23 | 22 | oveq1d | |- ( x = N -> ( -u x .x. X ) = ( -u N .x. X ) ) |
| 24 | oveq1 | |- ( x = N -> ( x .x. ( I ` X ) ) = ( N .x. ( I ` X ) ) ) |
|
| 25 | 23 24 | eqeq12d | |- ( x = N -> ( ( -u x .x. X ) = ( x .x. ( I ` X ) ) <-> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) ) |
| 26 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 27 | 1 26 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 28 | 27 | adantl | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 29 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 30 | 1 26 2 | mulg0 | |- ( ( I ` X ) e. B -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 31 | 29 30 | syl | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. ( I ` X ) ) = ( 0g ` G ) ) |
| 32 | 28 31 | eqtr4d | |- ( ( G e. Grp /\ X e. B ) -> ( 0 .x. X ) = ( 0 .x. ( I ` X ) ) ) |
| 33 | oveq1 | |- ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
|
| 34 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 35 | 34 | adantl | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> n e. CC ) |
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | negdi | |- ( ( n e. CC /\ 1 e. CC ) -> -u ( n + 1 ) = ( -u n + -u 1 ) ) |
|
| 38 | 35 36 37 | sylancl | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u ( n + 1 ) = ( -u n + -u 1 ) ) |
| 39 | 38 | oveq1d | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u ( n + 1 ) .x. X ) = ( ( -u n + -u 1 ) .x. X ) ) |
| 40 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> G e. Grp ) |
|
| 41 | nn0negz | |- ( n e. NN0 -> -u n e. ZZ ) |
|
| 42 | 41 | adantl | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u n e. ZZ ) |
| 43 | 1z | |- 1 e. ZZ |
|
| 44 | znegcl | |- ( 1 e. ZZ -> -u 1 e. ZZ ) |
|
| 45 | 43 44 | mp1i | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> -u 1 e. ZZ ) |
| 46 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> X e. B ) |
|
| 47 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 48 | 1 2 47 | mulgdir | |- ( ( G e. Grp /\ ( -u n e. ZZ /\ -u 1 e. ZZ /\ X e. B ) ) -> ( ( -u n + -u 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) ) |
| 49 | 40 42 45 46 48 | syl13anc | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n + -u 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) ) |
| 50 | 1 2 3 | mulgm1 | |- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) |
| 51 | 50 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u 1 .x. X ) = ( I ` X ) ) |
| 52 | 51 | oveq2d | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n .x. X ) ( +g ` G ) ( -u 1 .x. X ) ) = ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) ) |
| 53 | 39 49 52 | 3eqtrd | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( -u ( n + 1 ) .x. X ) = ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) ) |
| 54 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 55 | 54 | ad2antrr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> G e. Mnd ) |
| 56 | simpr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> n e. NN0 ) |
|
| 57 | 29 | adantr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( I ` X ) e. B ) |
| 58 | 1 2 47 | mulgnn0p1 | |- ( ( G e. Mnd /\ n e. NN0 /\ ( I ` X ) e. B ) -> ( ( n + 1 ) .x. ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 59 | 55 56 57 58 | syl3anc | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( n + 1 ) .x. ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) |
| 60 | 53 59 | eqeq12d | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) <-> ( ( -u n .x. X ) ( +g ` G ) ( I ` X ) ) = ( ( n .x. ( I ` X ) ) ( +g ` G ) ( I ` X ) ) ) ) |
| 61 | 33 60 | imbitrrid | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN0 ) -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) |
| 62 | 61 | ex | |- ( ( G e. Grp /\ X e. B ) -> ( n e. NN0 -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u ( n + 1 ) .x. X ) = ( ( n + 1 ) .x. ( I ` X ) ) ) ) ) |
| 63 | fveq2 | |- ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( I ` ( -u n .x. X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
|
| 64 | simpll | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> G e. Grp ) |
|
| 65 | nnnegz | |- ( n e. NN -> -u n e. ZZ ) |
|
| 66 | 65 | adantl | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> -u n e. ZZ ) |
| 67 | simplr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> X e. B ) |
|
| 68 | 1 2 3 | mulgneg | |- ( ( G e. Grp /\ -u n e. ZZ /\ X e. B ) -> ( -u -u n .x. X ) = ( I ` ( -u n .x. X ) ) ) |
| 69 | 64 66 67 68 | syl3anc | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( -u -u n .x. X ) = ( I ` ( -u n .x. X ) ) ) |
| 70 | id | |- ( n e. NN -> n e. NN ) |
|
| 71 | 1 2 3 | mulgnegnn | |- ( ( n e. NN /\ ( I ` X ) e. B ) -> ( -u n .x. ( I ` X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
| 72 | 70 29 71 | syl2anr | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( -u n .x. ( I ` X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) |
| 73 | 69 72 | eqeq12d | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) <-> ( I ` ( -u n .x. X ) ) = ( I ` ( n .x. ( I ` X ) ) ) ) ) |
| 74 | 63 73 | imbitrrid | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. NN ) -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) |
| 75 | 74 | ex | |- ( ( G e. Grp /\ X e. B ) -> ( n e. NN -> ( ( -u n .x. X ) = ( n .x. ( I ` X ) ) -> ( -u -u n .x. X ) = ( -u n .x. ( I ` X ) ) ) ) ) |
| 76 | 9 13 17 21 25 32 62 75 | zindd | |- ( ( G e. Grp /\ X e. B ) -> ( N e. ZZ -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) ) |
| 77 | 76 | 3impia | |- ( ( G e. Grp /\ X e. B /\ N e. ZZ ) -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) |
| 78 | 77 | 3com23 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( N .x. ( I ` X ) ) ) |