This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgmodid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgmodid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| mulgmodid.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgmodid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmodid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgmodid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | mulgmodid.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | nnrp | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) | |
| 6 | modval | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 mod 𝑀 ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) ) |
| 10 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 12 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 14 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 15 | nnne0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) | |
| 16 | redivcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0 ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) | |
| 17 | 4 14 15 16 | syl3an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
| 18 | 17 | 3anidm23 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
| 19 | 18 | flcld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
| 20 | 13 19 | zmulcld | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
| 21 | 20 | zcnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℂ ) |
| 22 | 11 21 | negsubd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) = ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 − ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) ) |
| 25 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝐺 ∈ Grp ) | |
| 26 | simpl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑁 ∈ ℤ ) | |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑁 ∈ ℤ ) |
| 28 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑀 ∈ ℤ ) |
| 29 | 19 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
| 30 | 28 29 | zmulcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
| 31 | 30 | znegcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ) |
| 32 | simpl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → 𝑋 ∈ 𝐵 ) |
| 34 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 35 | 1 3 34 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
| 36 | 25 27 31 33 35 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 + - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
| 37 | 9 24 36 | 3eqtr2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) ) |
| 38 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 40 | 19 | zcnd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℂ ) |
| 41 | 39 40 | mulneg2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) = - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) |
| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) = - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) |
| 44 | 18 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 / 𝑀 ) ∈ ℝ ) |
| 45 | 44 | flcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
| 46 | 45 | znegcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) |
| 47 | 1 3 | mulgassr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) ) |
| 48 | 25 46 28 33 47 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) ) |
| 49 | oveq2 | ⊢ ( ( 𝑀 · 𝑋 ) = 0 → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) | |
| 50 | 49 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) |
| 51 | 50 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · ( 𝑀 · 𝑋 ) ) = ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) ) |
| 52 | 1 3 2 | mulgz | ⊢ ( ( 𝐺 ∈ Grp ∧ - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ∈ ℤ ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) = 0 ) |
| 53 | 25 46 52 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) · 0 ) = 0 ) |
| 54 | 48 51 53 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑀 · - ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = 0 ) |
| 55 | 43 54 | eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) = 0 ) |
| 56 | 55 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) ( - ( 𝑀 · ( ⌊ ‘ ( 𝑁 / 𝑀 ) ) ) · 𝑋 ) ) = ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) ) |
| 57 | id | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) | |
| 58 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 59 | 57 26 32 58 | syl3an | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 60 | 1 34 2 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝑋 ) ) |
| 61 | 25 59 60 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 · 𝑋 ) ( +g ‘ 𝐺 ) 0 ) = ( 𝑁 · 𝑋 ) ) |
| 62 | 37 56 61 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ) ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) = 0 ) ) → ( ( 𝑁 mod 𝑀 ) · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |