This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgmodid.b | |- B = ( Base ` G ) |
|
| mulgmodid.o | |- .0. = ( 0g ` G ) |
||
| mulgmodid.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgmodid | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( N .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgmodid.b | |- B = ( Base ` G ) |
|
| 2 | mulgmodid.o | |- .0. = ( 0g ` G ) |
|
| 3 | mulgmodid.t | |- .x. = ( .g ` G ) |
|
| 4 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 5 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 6 | modval | |- ( ( N e. RR /\ M e. RR+ ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( N e. ZZ /\ M e. NN ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 8 | 7 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N mod M ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 9 | 8 | oveq1d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) |
| 10 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 11 | 10 | adantr | |- ( ( N e. ZZ /\ M e. NN ) -> N e. CC ) |
| 12 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 13 | 12 | adantl | |- ( ( N e. ZZ /\ M e. NN ) -> M e. ZZ ) |
| 14 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 15 | nnne0 | |- ( M e. NN -> M =/= 0 ) |
|
| 16 | redivcl | |- ( ( N e. RR /\ M e. RR /\ M =/= 0 ) -> ( N / M ) e. RR ) |
|
| 17 | 4 14 15 16 | syl3an | |- ( ( N e. ZZ /\ M e. NN /\ M e. NN ) -> ( N / M ) e. RR ) |
| 18 | 17 | 3anidm23 | |- ( ( N e. ZZ /\ M e. NN ) -> ( N / M ) e. RR ) |
| 19 | 18 | flcld | |- ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 20 | 13 19 | zmulcld | |- ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 21 | 20 | zcnd | |- ( ( N e. ZZ /\ M e. NN ) -> ( M x. ( |_ ` ( N / M ) ) ) e. CC ) |
| 22 | 11 21 | negsubd | |- ( ( N e. ZZ /\ M e. NN ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 23 | 22 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) = ( N - ( M x. ( |_ ` ( N / M ) ) ) ) ) |
| 24 | 23 | oveq1d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N - ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) ) |
| 25 | simp1 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> G e. Grp ) |
|
| 26 | simpl | |- ( ( N e. ZZ /\ M e. NN ) -> N e. ZZ ) |
|
| 27 | 26 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> N e. ZZ ) |
| 28 | 13 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> M e. ZZ ) |
| 29 | 19 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 30 | 28 29 | zmulcld | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 31 | 30 | znegcld | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ ) |
| 32 | simpl | |- ( ( X e. B /\ ( M .x. X ) = .0. ) -> X e. B ) |
|
| 33 | 32 | 3ad2ant3 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> X e. B ) |
| 34 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 35 | 1 3 34 | mulgdir | |- ( ( G e. Grp /\ ( N e. ZZ /\ -u ( M x. ( |_ ` ( N / M ) ) ) e. ZZ /\ X e. B ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 36 | 25 27 31 33 35 | syl13anc | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N + -u ( M x. ( |_ ` ( N / M ) ) ) ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 37 | 9 24 36 | 3eqtr2d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) ) |
| 38 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 39 | 38 | adantl | |- ( ( N e. ZZ /\ M e. NN ) -> M e. CC ) |
| 40 | 19 | zcnd | |- ( ( N e. ZZ /\ M e. NN ) -> ( |_ ` ( N / M ) ) e. CC ) |
| 41 | 39 40 | mulneg2d | |- ( ( N e. ZZ /\ M e. NN ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) |
| 42 | 41 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( M x. -u ( |_ ` ( N / M ) ) ) = -u ( M x. ( |_ ` ( N / M ) ) ) ) |
| 43 | 42 | oveq1d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) |
| 44 | 18 | 3ad2ant2 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N / M ) e. RR ) |
| 45 | 44 | flcld | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( |_ ` ( N / M ) ) e. ZZ ) |
| 46 | 45 | znegcld | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> -u ( |_ ` ( N / M ) ) e. ZZ ) |
| 47 | 1 3 | mulgassr | |- ( ( G e. Grp /\ ( -u ( |_ ` ( N / M ) ) e. ZZ /\ M e. ZZ /\ X e. B ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) |
| 48 | 25 46 28 33 47 | syl13anc | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) ) |
| 49 | oveq2 | |- ( ( M .x. X ) = .0. -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
|
| 50 | 49 | adantl | |- ( ( X e. B /\ ( M .x. X ) = .0. ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
| 51 | 50 | 3ad2ant3 | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. ( M .x. X ) ) = ( -u ( |_ ` ( N / M ) ) .x. .0. ) ) |
| 52 | 1 3 2 | mulgz | |- ( ( G e. Grp /\ -u ( |_ ` ( N / M ) ) e. ZZ ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) |
| 53 | 25 46 52 | syl2anc | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( |_ ` ( N / M ) ) .x. .0. ) = .0. ) |
| 54 | 48 51 53 | 3eqtrd | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( M x. -u ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) |
| 55 | 43 54 | eqtr3d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) = .0. ) |
| 56 | 55 | oveq2d | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) ( -u ( M x. ( |_ ` ( N / M ) ) ) .x. X ) ) = ( ( N .x. X ) ( +g ` G ) .0. ) ) |
| 57 | id | |- ( G e. Grp -> G e. Grp ) |
|
| 58 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
| 59 | 57 26 32 58 | syl3an | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( N .x. X ) e. B ) |
| 60 | 1 34 2 | grprid | |- ( ( G e. Grp /\ ( N .x. X ) e. B ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) |
| 61 | 25 59 60 | syl2anc | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N .x. X ) ( +g ` G ) .0. ) = ( N .x. X ) ) |
| 62 | 37 56 61 | 3eqtrd | |- ( ( G e. Grp /\ ( N e. ZZ /\ M e. NN ) /\ ( X e. B /\ ( M .x. X ) = .0. ) ) -> ( ( N mod M ) .x. X ) = ( N .x. X ) ) |