This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgass.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgassr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgass.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℂ ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑀 ∈ ℂ ) |
| 7 | 4 6 | mulcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 · 𝑀 ) = ( 𝑀 · 𝑁 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( ( 𝑀 · 𝑁 ) · 𝑋 ) ) |
| 10 | 1 2 | mulgass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑁 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |
| 11 | 9 10 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑀 ) · 𝑋 ) = ( 𝑀 · ( 𝑁 · 𝑋 ) ) ) |