This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base case of the induction in mreexexd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexexlem2d.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mreexexlem2d.2 | |- N = ( mrCls ` A ) |
||
| mreexexlem2d.3 | |- I = ( mrInd ` A ) |
||
| mreexexlem2d.4 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
||
| mreexexlem2d.5 | |- ( ph -> F C_ ( X \ H ) ) |
||
| mreexexlem2d.6 | |- ( ph -> G C_ ( X \ H ) ) |
||
| mreexexlem2d.7 | |- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
||
| mreexexlem2d.8 | |- ( ph -> ( F u. H ) e. I ) |
||
| mreexexlem3d.9 | |- ( ph -> ( F = (/) \/ G = (/) ) ) |
||
| Assertion | mreexexlem3d | |- ( ph -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexexlem2d.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mreexexlem2d.2 | |- N = ( mrCls ` A ) |
|
| 3 | mreexexlem2d.3 | |- I = ( mrInd ` A ) |
|
| 4 | mreexexlem2d.4 | |- ( ph -> A. s e. ~P X A. y e. X A. z e. ( ( N ` ( s u. { y } ) ) \ ( N ` s ) ) y e. ( N ` ( s u. { z } ) ) ) |
|
| 5 | mreexexlem2d.5 | |- ( ph -> F C_ ( X \ H ) ) |
|
| 6 | mreexexlem2d.6 | |- ( ph -> G C_ ( X \ H ) ) |
|
| 7 | mreexexlem2d.7 | |- ( ph -> F C_ ( N ` ( G u. H ) ) ) |
|
| 8 | mreexexlem2d.8 | |- ( ph -> ( F u. H ) e. I ) |
|
| 9 | mreexexlem3d.9 | |- ( ph -> ( F = (/) \/ G = (/) ) ) |
|
| 10 | simpr | |- ( ( ph /\ F = (/) ) -> F = (/) ) |
|
| 11 | 1 | adantr | |- ( ( ph /\ G = (/) ) -> A e. ( Moore ` X ) ) |
| 12 | 7 | adantr | |- ( ( ph /\ G = (/) ) -> F C_ ( N ` ( G u. H ) ) ) |
| 13 | simpr | |- ( ( ph /\ G = (/) ) -> G = (/) ) |
|
| 14 | 13 | uneq1d | |- ( ( ph /\ G = (/) ) -> ( G u. H ) = ( (/) u. H ) ) |
| 15 | uncom | |- ( H u. (/) ) = ( (/) u. H ) |
|
| 16 | un0 | |- ( H u. (/) ) = H |
|
| 17 | 15 16 | eqtr3i | |- ( (/) u. H ) = H |
| 18 | 14 17 | eqtrdi | |- ( ( ph /\ G = (/) ) -> ( G u. H ) = H ) |
| 19 | 18 | fveq2d | |- ( ( ph /\ G = (/) ) -> ( N ` ( G u. H ) ) = ( N ` H ) ) |
| 20 | 12 19 | sseqtrd | |- ( ( ph /\ G = (/) ) -> F C_ ( N ` H ) ) |
| 21 | 8 | adantr | |- ( ( ph /\ G = (/) ) -> ( F u. H ) e. I ) |
| 22 | 3 11 21 | mrissd | |- ( ( ph /\ G = (/) ) -> ( F u. H ) C_ X ) |
| 23 | 22 | unssbd | |- ( ( ph /\ G = (/) ) -> H C_ X ) |
| 24 | 11 2 23 | mrcssidd | |- ( ( ph /\ G = (/) ) -> H C_ ( N ` H ) ) |
| 25 | 20 24 | unssd | |- ( ( ph /\ G = (/) ) -> ( F u. H ) C_ ( N ` H ) ) |
| 26 | ssun2 | |- H C_ ( F u. H ) |
|
| 27 | 26 | a1i | |- ( ( ph /\ G = (/) ) -> H C_ ( F u. H ) ) |
| 28 | 11 2 3 25 27 21 | mrissmrcd | |- ( ( ph /\ G = (/) ) -> ( F u. H ) = H ) |
| 29 | ssequn1 | |- ( F C_ H <-> ( F u. H ) = H ) |
|
| 30 | 28 29 | sylibr | |- ( ( ph /\ G = (/) ) -> F C_ H ) |
| 31 | 5 | adantr | |- ( ( ph /\ G = (/) ) -> F C_ ( X \ H ) ) |
| 32 | 30 31 | ssind | |- ( ( ph /\ G = (/) ) -> F C_ ( H i^i ( X \ H ) ) ) |
| 33 | disjdif | |- ( H i^i ( X \ H ) ) = (/) |
|
| 34 | 32 33 | sseqtrdi | |- ( ( ph /\ G = (/) ) -> F C_ (/) ) |
| 35 | ss0b | |- ( F C_ (/) <-> F = (/) ) |
|
| 36 | 34 35 | sylib | |- ( ( ph /\ G = (/) ) -> F = (/) ) |
| 37 | 10 36 9 | mpjaodan | |- ( ph -> F = (/) ) |
| 38 | 0elpw | |- (/) e. ~P G |
|
| 39 | 37 38 | eqeltrdi | |- ( ph -> F e. ~P G ) |
| 40 | 1 | elfvexd | |- ( ph -> X e. _V ) |
| 41 | 5 | difss2d | |- ( ph -> F C_ X ) |
| 42 | 40 41 | ssexd | |- ( ph -> F e. _V ) |
| 43 | enrefg | |- ( F e. _V -> F ~~ F ) |
|
| 44 | 42 43 | syl | |- ( ph -> F ~~ F ) |
| 45 | breq2 | |- ( i = F -> ( F ~~ i <-> F ~~ F ) ) |
|
| 46 | uneq1 | |- ( i = F -> ( i u. H ) = ( F u. H ) ) |
|
| 47 | 46 | eleq1d | |- ( i = F -> ( ( i u. H ) e. I <-> ( F u. H ) e. I ) ) |
| 48 | 45 47 | anbi12d | |- ( i = F -> ( ( F ~~ i /\ ( i u. H ) e. I ) <-> ( F ~~ F /\ ( F u. H ) e. I ) ) ) |
| 49 | 48 | rspcev | |- ( ( F e. ~P G /\ ( F ~~ F /\ ( F u. H ) e. I ) ) -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |
| 50 | 39 44 8 49 | syl12anc | |- ( ph -> E. i e. ~P G ( F ~~ i /\ ( i u. H ) e. I ) ) |