This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd , and so are equal by mrieqv2d .) (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrissmrcd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mrissmrcd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mrissmrcd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mrissmrcd.4 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) | ||
| mrissmrcd.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| mrissmrcd.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| Assertion | mrissmrcd | ⊢ ( 𝜑 → 𝑆 = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissmrcd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mrissmrcd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mrissmrcd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mrissmrcd.4 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) | |
| 5 | mrissmrcd.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 6 | mrissmrcd.6 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 7 | 1 2 4 5 | mressmrcd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 8 | pssne | ⊢ ( ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) → ( 𝑁 ‘ 𝑇 ) ≠ ( 𝑁 ‘ 𝑆 ) ) | |
| 9 | 8 | necomd | ⊢ ( ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) → ( 𝑁 ‘ 𝑆 ) ≠ ( 𝑁 ‘ 𝑇 ) ) |
| 10 | 9 | necon2bi | ⊢ ( ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) → ¬ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → ¬ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) |
| 12 | 3 1 6 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 13 | 1 2 3 12 | mrieqv2d | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
| 14 | 6 13 | mpbid | ⊢ ( 𝜑 → ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
| 15 | 6 5 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → 𝑠 = 𝑇 ) | |
| 17 | 16 | psseq1d | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( 𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆 ) ) |
| 18 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( 𝑁 ‘ 𝑠 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 19 | 18 | psseq1d | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ↔ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ↔ ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
| 21 | 15 20 | spcdv | ⊢ ( 𝜑 → ( ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) → ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
| 22 | 14 21 | mpd | ⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
| 23 | 11 22 | mtod | ⊢ ( 𝜑 → ¬ 𝑇 ⊊ 𝑆 ) |
| 24 | sspss | ⊢ ( 𝑇 ⊆ 𝑆 ↔ ( 𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆 ) ) | |
| 25 | 5 24 | sylib | ⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆 ) ) |
| 26 | 25 | ord | ⊢ ( 𝜑 → ( ¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆 ) ) |
| 27 | 23 26 | mpd | ⊢ ( 𝜑 → 𝑇 = 𝑆 ) |
| 28 | 27 | eqcomd | ⊢ ( 𝜑 → 𝑆 = 𝑇 ) |