This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismri2dad.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| ismri2dad.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| ismri2dad.3 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | ||
| ismri2dad.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| ismri2dad.5 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| Assertion | ismri2dad | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri2dad.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 2 | ismri2dad.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 3 | ismri2dad.3 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 4 | ismri2dad.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | ismri2dad.5 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 6 | 2 3 4 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 7 | 1 2 3 6 | ismri2d | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) | |
| 10 | 9 | sneqd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → { 𝑥 } = { 𝑌 } ) |
| 11 | 10 | difeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑆 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑌 } ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 13 | 9 12 | eleq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 14 | 13 | notbid | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 15 | 5 14 | rspcdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 16 | 8 15 | mpd | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |