This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrissmrid.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mrissmrid.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mrissmrid.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mrissmrid.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| mrissmrid.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| Assertion | mrissmrid | ⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrissmrid.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mrissmrid.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mrissmrid.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mrissmrid.4 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 5 | mrissmrid.5 | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 6 | 3 1 4 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 7 | 5 6 | sstrd | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 8 | 2 3 1 6 | ismri2d | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 9 | 4 8 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 10 | 5 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆 ) ) |
| 11 | 5 | ssdifd | ⊢ ( 𝜑 → ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
| 12 | 6 | ssdifssd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 13 | 1 2 11 12 | mrcssd | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 14 | 13 | ssneld | ⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 15 | 10 14 | imim12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) ) |
| 16 | 15 | ralimdv2 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ∀ 𝑥 ∈ 𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
| 17 | 9 16 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) |
| 18 | 2 3 1 7 17 | ismri2dd | ⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) |