This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in FaureFrolicher p. 84. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexmrid.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| mreexmrid.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| mreexmrid.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| mreexmrid.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexmrid.5 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | ||
| mreexmrid.6 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | ||
| mreexmrid.7 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) | ||
| Assertion | mreexmrid | ⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑌 } ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexmrid.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) | |
| 2 | mreexmrid.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | mreexmrid.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | mreexmrid.4 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 5 | mreexmrid.5 | ⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) | |
| 6 | mreexmrid.6 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | |
| 7 | mreexmrid.7 | ⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) | |
| 8 | 3 1 5 | mrissd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 9 | 6 | snssd | ⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑋 ) |
| 10 | 8 9 | unssd | ⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑌 } ) ⊆ 𝑋 ) |
| 11 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 12 | 11 | elfvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑋 ∈ V ) |
| 13 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) |
| 14 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑆 ∈ 𝐼 ) |
| 15 | 3 11 14 | mrissd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 16 | 15 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 17 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑌 ∈ 𝑋 ) |
| 18 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) | |
| 19 | difundir | ⊢ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ ( { 𝑌 } ∖ { 𝑥 } ) ) | |
| 20 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑆 ) | |
| 21 | 1 2 8 | mrcssidd | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 22 | 21 7 | ssneldd | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑆 ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ 𝑆 ) |
| 24 | nelneq | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ ¬ 𝑌 ∈ 𝑆 ) → ¬ 𝑥 = 𝑌 ) | |
| 25 | 20 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 = 𝑌 ) |
| 26 | elsni | ⊢ ( 𝑥 ∈ { 𝑌 } → 𝑥 = 𝑌 ) | |
| 27 | 25 26 | nsyl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ { 𝑌 } ) |
| 28 | difsnb | ⊢ ( ¬ 𝑥 ∈ { 𝑌 } ↔ ( { 𝑌 } ∖ { 𝑥 } ) = { 𝑌 } ) | |
| 29 | 27 28 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( { 𝑌 } ∖ { 𝑥 } ) = { 𝑌 } ) |
| 30 | 29 | uneq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∖ { 𝑥 } ) ∪ ( { 𝑌 } ∖ { 𝑥 } ) ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) |
| 31 | 19 30 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) |
| 32 | 31 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) ) |
| 33 | 18 32 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑌 } ) ) ) |
| 34 | 2 3 11 14 20 | ismri2dad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 35 | 12 13 16 17 33 34 | mreexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
| 36 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 37 | undif1 | ⊢ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑆 ∪ { 𝑥 } ) | |
| 38 | 20 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → { 𝑥 } ⊆ 𝑆 ) |
| 39 | ssequn2 | ⊢ ( { 𝑥 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 𝑥 } ) = 𝑆 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑆 ∪ { 𝑥 } ) = 𝑆 ) |
| 41 | 37 40 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝑆 ) |
| 42 | 41 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 43 | 36 42 | neleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ ( ( 𝑆 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) ) |
| 44 | 35 43 | pm2.65i | ⊢ ¬ ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 45 | df-3an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) ) | |
| 46 | 44 45 | mtbi | ⊢ ¬ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 47 | 46 | imnani | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 48 | 47 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 49 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → 𝑥 = 𝑌 ) |
| 50 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 51 | 49 50 | eqneltrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 52 | 49 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → { 𝑥 } = { 𝑌 } ) |
| 53 | 52 | difeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑌 } ) ) |
| 54 | difun2 | ⊢ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑌 } ) = ( 𝑆 ∖ { 𝑌 } ) | |
| 55 | 53 54 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑌 } ) ) |
| 56 | difsnb | ⊢ ( ¬ 𝑌 ∈ 𝑆 ↔ ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) | |
| 57 | 22 56 | sylib | ⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( 𝑆 ∖ { 𝑌 } ) = 𝑆 ) |
| 59 | 55 58 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) = 𝑆 ) |
| 60 | 59 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 61 | 51 60 | neleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) ∧ 𝑥 ∈ { 𝑌 } ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 62 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) | |
| 63 | elun | ⊢ ( 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ↔ ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ { 𝑌 } ) ) | |
| 64 | 62 63 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ { 𝑌 } ) ) |
| 65 | 48 61 64 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 66 | 65 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑆 ∪ { 𝑌 } ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑆 ∪ { 𝑌 } ) ∖ { 𝑥 } ) ) ) |
| 67 | 2 3 1 10 66 | ismri2dd | ⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑌 } ) ∈ 𝐼 ) |