This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | ||
| srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | ||
| srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | ||
| Assertion | srgpcomp | ⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.s | ⊢ 𝑆 = ( Base ‘ 𝑅 ) | |
| 2 | srgpcomp.m | ⊢ × = ( .r ‘ 𝑅 ) | |
| 3 | srgpcomp.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 4 | srgpcomp.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 5 | srgpcomp.r | ⊢ ( 𝜑 → 𝑅 ∈ SRing ) | |
| 6 | srgpcomp.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 7 | srgpcomp.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 8 | srgpcomp.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 9 | srgpcomp.c | ⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐵 ) = ( 0 ↑ 𝐵 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 0 ↑ 𝐵 ) × 𝐴 ) ) |
| 12 | 10 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐵 ) = ( 𝑦 ↑ 𝐵 ) ) | |
| 16 | 15 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) ) |
| 17 | 15 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) ) |
| 20 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) | |
| 21 | 20 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) ) |
| 22 | 20 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 25 | oveq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 ↑ 𝐵 ) = ( 𝐾 ↑ 𝐵 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) |
| 27 | 25 | oveq2d | ⊢ ( 𝑥 = 𝐾 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑥 = 𝐾 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) ) |
| 30 | 3 1 | mgpbas | ⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 31 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 32 | 3 31 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) |
| 33 | 30 32 4 | mulg0 | ⊢ ( 𝐵 ∈ 𝑆 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
| 34 | 7 33 | syl | ⊢ ( 𝜑 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
| 35 | 34 | oveq1d | ⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( ( 1r ‘ 𝑅 ) × 𝐴 ) ) |
| 36 | 1 2 31 | srgridm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
| 37 | 5 6 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
| 38 | 34 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 × ( 0 ↑ 𝐵 ) ) = ( 𝐴 × ( 1r ‘ 𝑅 ) ) ) |
| 39 | 1 2 31 | srglidm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
| 40 | 5 6 39 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
| 41 | 37 38 40 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 42 | 35 41 | eqtrd | ⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 43 | 3 | srgmgp | ⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 44 | 5 43 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 46 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) | |
| 47 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐵 ∈ 𝑆 ) |
| 48 | 3 2 | mgpplusg | ⊢ × = ( +g ‘ 𝐺 ) |
| 49 | 30 4 48 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
| 50 | 45 46 47 49 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
| 51 | 50 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) ) |
| 52 | 9 | eqcomd | ⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
| 54 | 53 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 55 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ SRing ) |
| 56 | 30 4 45 46 47 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ) |
| 57 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ 𝑆 ) |
| 58 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
| 59 | 55 56 47 57 58 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
| 60 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 61 | 55 56 57 47 60 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 62 | 54 59 61 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 63 | 51 62 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 65 | oveq1 | ⊢ ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) ) | |
| 66 | 1 2 | srgass | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐴 ∈ 𝑆 ∧ ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
| 67 | 55 57 56 47 66 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
| 68 | 50 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) |
| 69 | 68 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 70 | 67 69 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 71 | 65 70 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 72 | 64 71 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 73 | 72 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
| 74 | 73 | expcom | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝜑 → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 75 | 74 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 76 | 14 19 24 29 42 75 | nn0ind | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 77 | 8 76 | mpcom | ⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |