This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | sscntz | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzfval.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntzfval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 4 | 1 2 3 | cntzval | ⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑍 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
| 5 | 4 | sseq2d | ⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ 𝑆 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
| 6 | ssrab | ⊢ ( 𝑆 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) ) |
| 8 | ibar | ⊢ ( 𝑆 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) ) | |
| 9 | 8 | bicomd | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 10 | 7 9 | sylan9bbr | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |