This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in ApostolNT p. 107. (Contributed by AV, 24-May-2020) (Proof shortened by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mod2eq1n2dvds | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 ↔ ¬ 2 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeo | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 4 | mod0 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 0 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 mod 2 ) = 0 ) |
| 7 | eqeq1 | ⊢ ( ( 𝑁 mod 2 ) = 0 → ( ( 𝑁 mod 2 ) = 1 ↔ 0 = 1 ) ) | |
| 8 | 0ne1 | ⊢ 0 ≠ 1 | |
| 9 | eqneqall | ⊢ ( 0 = 1 → ( 0 ≠ 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 10 | 8 9 | mpi | ⊢ ( 0 = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 11 | 7 10 | biimtrdi | ⊢ ( ( 𝑁 mod 2 ) = 0 → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 12 | 6 11 | syl | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 13 | 12 | expcom | ⊢ ( ( 𝑁 / 2 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 14 | peano2zm | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ) | |
| 15 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 16 | xp1d2m1eqxm1d2 | ⊢ ( 𝑁 ∈ ℂ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) = ( ( 𝑁 − 1 ) / 2 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) = ( ( 𝑁 − 1 ) / 2 ) ) |
| 18 | 17 | eleq1d | ⊢ ( 𝑁 ∈ ℤ → ( ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
| 19 | 18 | biimpd | ⊢ ( 𝑁 ∈ ℤ → ( ( ( ( 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
| 20 | 14 19 | mpan9 | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) |
| 21 | oveq2 | ⊢ ( 𝑛 = ( ( 𝑁 − 1 ) / 2 ) → ( 2 · 𝑛 ) = ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( 2 · 𝑛 ) = ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) ) |
| 24 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 25 | 24 | zcnd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℂ ) |
| 26 | 2cnd | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) | |
| 27 | 2ne0 | ⊢ 2 ≠ 0 | |
| 28 | 27 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ≠ 0 ) |
| 29 | 25 26 28 | divcan2d | ⊢ ( 𝑁 ∈ ℤ → ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) = ( 𝑁 − 1 ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
| 31 | npcan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 32 | 15 31 | syl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 33 | 30 32 | eqtrd | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = 𝑁 ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · ( ( 𝑁 − 1 ) / 2 ) ) + 1 ) = 𝑁 ) |
| 35 | 23 34 | eqtrd | ⊢ ( ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑛 = ( ( 𝑁 − 1 ) / 2 ) ) → ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 36 | 20 35 | rspcedeq1vd | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) |
| 37 | 36 | a1d | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 38 | 37 | ex | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 39 | 13 38 | jaoi | ⊢ ( ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 40 | 1 39 | mpcom | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 → ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 41 | oveq1 | ⊢ ( 𝑁 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑁 mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) | |
| 42 | 41 | eqcoms | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
| 43 | 2cnd | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℂ ) | |
| 44 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 45 | 43 44 | mulcomd | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) = ( 𝑛 · 2 ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) mod 2 ) = ( ( 𝑛 · 2 ) mod 2 ) ) |
| 47 | mulmod0 | ⊢ ( ( 𝑛 ∈ ℤ ∧ 2 ∈ ℝ+ ) → ( ( 𝑛 · 2 ) mod 2 ) = 0 ) | |
| 48 | 3 47 | mpan2 | ⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 · 2 ) mod 2 ) = 0 ) |
| 49 | 46 48 | eqtrd | ⊢ ( 𝑛 ∈ ℤ → ( ( 2 · 𝑛 ) mod 2 ) = 0 ) |
| 50 | 49 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) = ( 0 + 1 ) ) |
| 51 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 52 | 50 51 | eqtrdi | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) = 1 ) |
| 53 | 52 | oveq1d | ⊢ ( 𝑛 ∈ ℤ → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( 1 mod 2 ) ) |
| 54 | 2z | ⊢ 2 ∈ ℤ | |
| 55 | 54 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℤ ) |
| 56 | id | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℤ ) | |
| 57 | 55 56 | zmulcld | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 58 | 57 | zred | ⊢ ( 𝑛 ∈ ℤ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 59 | 1red | ⊢ ( 𝑛 ∈ ℤ → 1 ∈ ℝ ) | |
| 60 | 3 | a1i | ⊢ ( 𝑛 ∈ ℤ → 2 ∈ ℝ+ ) |
| 61 | modaddmod | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) | |
| 62 | 58 59 60 61 | syl3anc | ⊢ ( 𝑛 ∈ ℤ → ( ( ( ( 2 · 𝑛 ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) ) |
| 63 | 2re | ⊢ 2 ∈ ℝ | |
| 64 | 1lt2 | ⊢ 1 < 2 | |
| 65 | 63 64 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 1 < 2 ) |
| 66 | 1mod | ⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( 1 mod 2 ) = 1 ) | |
| 67 | 65 66 | mp1i | ⊢ ( 𝑛 ∈ ℤ → ( 1 mod 2 ) = 1 ) |
| 68 | 53 62 67 | 3eqtr3d | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) = 1 ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) mod 2 ) = 1 ) |
| 70 | 42 69 | sylan9eqr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) → ( 𝑁 mod 2 ) = 1 ) |
| 71 | 70 | rexlimdva2 | ⊢ ( 𝑁 ∈ ℤ → ( ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 mod 2 ) = 1 ) ) |
| 72 | 40 71 | impbid | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 73 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 74 | 72 73 | bitr4d | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 mod 2 ) = 1 ↔ ¬ 2 ∥ 𝑁 ) ) |