This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xp1d2m1eqxm1d2 | ⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) = ( ( 𝑋 − 1 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2cn | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 1 ) ∈ ℂ ) | |
| 2 | 1 | halfcld | ⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + 1 ) / 2 ) ∈ ℂ ) |
| 3 | peano2cnm | ⊢ ( ( ( 𝑋 + 1 ) / 2 ) ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) ∈ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) ∈ ℂ ) |
| 5 | peano2cnm | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − 1 ) ∈ ℂ ) | |
| 6 | 5 | halfcld | ⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 − 1 ) / 2 ) ∈ ℂ ) |
| 7 | 2cnd | ⊢ ( 𝑋 ∈ ℂ → 2 ∈ ℂ ) | |
| 8 | 2ne0 | ⊢ 2 ≠ 0 | |
| 9 | 8 | a1i | ⊢ ( 𝑋 ∈ ℂ → 2 ≠ 0 ) |
| 10 | 1cnd | ⊢ ( 𝑋 ∈ ℂ → 1 ∈ ℂ ) | |
| 11 | 2 10 7 | subdird | ⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) · 2 ) = ( ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) − ( 1 · 2 ) ) ) |
| 12 | 1 7 9 | divcan1d | ⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) = ( 𝑋 + 1 ) ) |
| 13 | 7 | mullidd | ⊢ ( 𝑋 ∈ ℂ → ( 1 · 2 ) = 2 ) |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) − ( 1 · 2 ) ) = ( ( 𝑋 + 1 ) − 2 ) ) |
| 15 | 5 7 9 | divcan1d | ⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) = ( 𝑋 − 1 ) ) |
| 16 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 17 | 16 | a1i | ⊢ ( 𝑋 ∈ ℂ → ( 2 − 1 ) = 1 ) |
| 18 | 17 | oveq2d | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − ( 2 − 1 ) ) = ( 𝑋 − 1 ) ) |
| 19 | id | ⊢ ( 𝑋 ∈ ℂ → 𝑋 ∈ ℂ ) | |
| 20 | 19 7 10 | subsub3d | ⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − ( 2 − 1 ) ) = ( ( 𝑋 + 1 ) − 2 ) ) |
| 21 | 15 18 20 | 3eqtr2rd | ⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + 1 ) − 2 ) = ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) ) |
| 22 | 11 14 21 | 3eqtrd | ⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) · 2 ) = ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) ) |
| 23 | 4 6 7 9 22 | mulcan2ad | ⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) = ( ( 𝑋 − 1 ) / 2 ) ) |