This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in ApostolNT p. 107. (Contributed by AV, 24-May-2020) (Proof shortened by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mod2eq1n2dvds | |- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> -. 2 || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zeo | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | 2rp | |- 2 e. RR+ |
|
| 4 | mod0 | |- ( ( N e. RR /\ 2 e. RR+ ) -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
|
| 5 | 2 3 4 | sylancl | |- ( N e. ZZ -> ( ( N mod 2 ) = 0 <-> ( N / 2 ) e. ZZ ) ) |
| 6 | 5 | biimpar | |- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( N mod 2 ) = 0 ) |
| 7 | eqeq1 | |- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 <-> 0 = 1 ) ) |
|
| 8 | 0ne1 | |- 0 =/= 1 |
|
| 9 | eqneqall | |- ( 0 = 1 -> ( 0 =/= 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 10 | 8 9 | mpi | |- ( 0 = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 11 | 7 10 | biimtrdi | |- ( ( N mod 2 ) = 0 -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 12 | 6 11 | syl | |- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 13 | 12 | expcom | |- ( ( N / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 14 | peano2zm | |- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
|
| 15 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 16 | xp1d2m1eqxm1d2 | |- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
|
| 17 | 15 16 | syl | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 18 | 17 | eleq1d | |- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 19 | 18 | biimpd | |- ( N e. ZZ -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ -> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 20 | 14 19 | mpan9 | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 21 | oveq2 | |- ( n = ( ( N - 1 ) / 2 ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
|
| 22 | 21 | adantl | |- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( 2 x. n ) = ( 2 x. ( ( N - 1 ) / 2 ) ) ) |
| 23 | 22 | oveq1d | |- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) ) |
| 24 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 25 | 24 | zcnd | |- ( N e. ZZ -> ( N - 1 ) e. CC ) |
| 26 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 27 | 2ne0 | |- 2 =/= 0 |
|
| 28 | 27 | a1i | |- ( N e. ZZ -> 2 =/= 0 ) |
| 29 | 25 26 28 | divcan2d | |- ( N e. ZZ -> ( 2 x. ( ( N - 1 ) / 2 ) ) = ( N - 1 ) ) |
| 30 | 29 | oveq1d | |- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = ( ( N - 1 ) + 1 ) ) |
| 31 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 32 | 15 31 | syl | |- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
| 33 | 30 32 | eqtrd | |- ( N e. ZZ -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
| 34 | 33 | ad2antlr | |- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. ( ( N - 1 ) / 2 ) ) + 1 ) = N ) |
| 35 | 23 34 | eqtrd | |- ( ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) /\ n = ( ( N - 1 ) / 2 ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
| 36 | 20 35 | rspcedeq1vd | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
| 37 | 36 | a1d | |- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ N e. ZZ ) -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 38 | 37 | ex | |- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 39 | 13 38 | jaoi | |- ( ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 40 | 1 39 | mpcom | |- ( N e. ZZ -> ( ( N mod 2 ) = 1 -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 41 | oveq1 | |- ( N = ( ( 2 x. n ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
|
| 42 | 41 | eqcoms | |- ( ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 43 | 2cnd | |- ( n e. ZZ -> 2 e. CC ) |
|
| 44 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 45 | 43 44 | mulcomd | |- ( n e. ZZ -> ( 2 x. n ) = ( n x. 2 ) ) |
| 46 | 45 | oveq1d | |- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = ( ( n x. 2 ) mod 2 ) ) |
| 47 | mulmod0 | |- ( ( n e. ZZ /\ 2 e. RR+ ) -> ( ( n x. 2 ) mod 2 ) = 0 ) |
|
| 48 | 3 47 | mpan2 | |- ( n e. ZZ -> ( ( n x. 2 ) mod 2 ) = 0 ) |
| 49 | 46 48 | eqtrd | |- ( n e. ZZ -> ( ( 2 x. n ) mod 2 ) = 0 ) |
| 50 | 49 | oveq1d | |- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = ( 0 + 1 ) ) |
| 51 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 52 | 50 51 | eqtrdi | |- ( n e. ZZ -> ( ( ( 2 x. n ) mod 2 ) + 1 ) = 1 ) |
| 53 | 52 | oveq1d | |- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( 1 mod 2 ) ) |
| 54 | 2z | |- 2 e. ZZ |
|
| 55 | 54 | a1i | |- ( n e. ZZ -> 2 e. ZZ ) |
| 56 | id | |- ( n e. ZZ -> n e. ZZ ) |
|
| 57 | 55 56 | zmulcld | |- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
| 58 | 57 | zred | |- ( n e. ZZ -> ( 2 x. n ) e. RR ) |
| 59 | 1red | |- ( n e. ZZ -> 1 e. RR ) |
|
| 60 | 3 | a1i | |- ( n e. ZZ -> 2 e. RR+ ) |
| 61 | modaddmod | |- ( ( ( 2 x. n ) e. RR /\ 1 e. RR /\ 2 e. RR+ ) -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
|
| 62 | 58 59 60 61 | syl3anc | |- ( n e. ZZ -> ( ( ( ( 2 x. n ) mod 2 ) + 1 ) mod 2 ) = ( ( ( 2 x. n ) + 1 ) mod 2 ) ) |
| 63 | 2re | |- 2 e. RR |
|
| 64 | 1lt2 | |- 1 < 2 |
|
| 65 | 63 64 | pm3.2i | |- ( 2 e. RR /\ 1 < 2 ) |
| 66 | 1mod | |- ( ( 2 e. RR /\ 1 < 2 ) -> ( 1 mod 2 ) = 1 ) |
|
| 67 | 65 66 | mp1i | |- ( n e. ZZ -> ( 1 mod 2 ) = 1 ) |
| 68 | 53 62 67 | 3eqtr3d | |- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
| 69 | 68 | adantl | |- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) mod 2 ) = 1 ) |
| 70 | 42 69 | sylan9eqr | |- ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( N mod 2 ) = 1 ) |
| 71 | 70 | rexlimdva2 | |- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( N mod 2 ) = 1 ) ) |
| 72 | 40 71 | impbid | |- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
| 73 | odd2np1 | |- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 74 | 72 73 | bitr4d | |- ( N e. ZZ -> ( ( N mod 2 ) = 1 <-> -. 2 || N ) ) |