This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018) (Revised by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulmod0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 3 | rpcn | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ ) |
| 5 | rpne0 | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
| 7 | 2 4 6 | divcan4d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) = 𝐴 ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℤ ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) |
| 10 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 11 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 12 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐴 · 𝑀 ) ∈ ℝ ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 · 𝑀 ) ∈ ℝ ) |
| 14 | mod0 | ⊢ ( ( ( 𝐴 · 𝑀 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) ) | |
| 15 | 13 14 | sylancom | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) ) |
| 16 | 9 15 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ) |