This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddnn02np1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) | |
| 2 | elnn0z | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ↔ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 3 | 2tnp1ge0ge0 | ⊢ ( 𝑛 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ↔ 0 ≤ 𝑛 ) ) | |
| 4 | 3 | biimpd | ⊢ ( 𝑛 ∈ ℤ → ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → 0 ≤ 𝑛 ) ) |
| 5 | 4 | imdistani | ⊢ ( ( 𝑛 ∈ ℤ ∧ 0 ≤ ( ( 2 · 𝑛 ) + 1 ) ) → ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) |
| 6 | 5 | expcom | ⊢ ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℤ → ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) ) |
| 7 | elnn0z | ⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) | |
| 8 | 6 7 | imbitrrdi | ⊢ ( 0 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
| 9 | 2 8 | simplbiim | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
| 10 | 1 9 | biimtrrdi | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) ) |
| 11 | 10 | com13 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ0 → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) ) |
| 12 | 11 | impcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) |
| 13 | 12 | pm4.71rd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 14 | 13 | bicomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 15 | 14 | rexbidva | ⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 16 | nn0ssz | ⊢ ℕ0 ⊆ ℤ | |
| 17 | rexss | ⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) | |
| 18 | 16 17 | mp1i | ⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 19 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 20 | odd2np1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 22 | 15 18 21 | 3bitr4rd | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |