This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy sequence on a metric subspace. (Contributed by NM, 29-Jan-2008) (Revised by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | causs | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caufpm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 2 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 3 | cnex | ⊢ ℂ ∈ V | |
| 4 | elpmg | ⊢ ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) ) |
| 6 | 5 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
| 7 | 1 6 | syldan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × 𝑋 ) ) ) |
| 8 | rnss | ⊢ ( 𝐹 ⊆ ( ℂ × 𝑋 ) → ran 𝐹 ⊆ ran ( ℂ × 𝑋 ) ) | |
| 9 | 7 8 | simpl2im | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ ran ( ℂ × 𝑋 ) ) |
| 10 | rnxpss | ⊢ ran ( ℂ × 𝑋 ) ⊆ 𝑋 | |
| 11 | 9 10 | sstrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑋 ) |
| 12 | 11 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑋 ) |
| 13 | frn | ⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ran 𝐹 ⊆ 𝑌 ) | |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ 𝑌 ) |
| 15 | 12 14 | ssind | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 17 | xmetres | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 18 | caufpm | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) | |
| 19 | 17 18 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) |
| 20 | inex1g | ⊢ ( 𝑋 ∈ dom ∞Met → ( 𝑋 ∩ 𝑌 ) ∈ V ) | |
| 21 | 2 20 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
| 22 | elpmg | ⊢ ( ( ( 𝑋 ∩ 𝑌 ) ∈ V ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) | |
| 23 | 21 3 22 | sylancl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ↔ ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( ( 𝑋 ∩ 𝑌 ) ↑pm ℂ ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) |
| 25 | 19 24 | syldan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( Fun 𝐹 ∧ 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) ) |
| 26 | rnss | ⊢ ( 𝐹 ⊆ ( ℂ × ( 𝑋 ∩ 𝑌 ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) | |
| 27 | 25 26 | simpl2im | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ran 𝐹 ⊆ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ) |
| 28 | rnxpss | ⊢ ran ( ℂ × ( 𝑋 ∩ 𝑌 ) ) ⊆ ( 𝑋 ∩ 𝑌 ) | |
| 29 | 27 28 | sstrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 30 | 29 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) |
| 32 | ffn | ⊢ ( 𝐹 : ℕ ⟶ 𝑌 → 𝐹 Fn ℕ ) | |
| 33 | df-f | ⊢ ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ↔ ( 𝐹 Fn ℕ ∧ ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 34 | 33 | simplbi2 | ⊢ ( 𝐹 Fn ℕ → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ) |
| 35 | 32 34 | syl | ⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ) |
| 36 | inss2 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 | |
| 37 | 36 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) |
| 38 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) → 𝐹 : ℕ ⟶ 𝑌 ) | |
| 39 | 37 38 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 40 | 39 | ancoms | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ 𝑌 ) |
| 41 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) | |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 43 | eluznn | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → 𝑧 ∈ ℕ ) | |
| 44 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑧 ∈ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) | |
| 45 | 43 44 | sylan2 | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 46 | 45 | anassrs | ⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 47 | 42 46 | ovresd | ⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 | 47 | breq1d | ⊢ ( ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 49 | 48 | ralbidva | ⊢ ( ( 𝐹 : ℕ ⟶ 𝑌 ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 50 | 49 | rexbidva | ⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 51 | 50 | ralbidv | ⊢ ( 𝐹 : ℕ ⟶ 𝑌 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 52 | 40 51 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 53 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 54 | 17 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 55 | 1zzd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 1 ∈ ℤ ) | |
| 56 | eqidd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑧 ∈ ℕ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 57 | eqidd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 58 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) | |
| 59 | 53 54 55 56 57 58 | iscauf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 60 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 61 | id | ⊢ ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) → 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) | |
| 62 | inss1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 | |
| 63 | 62 | a1i | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) |
| 64 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ∧ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 ) → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 65 | 61 63 64 | syl2anr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 66 | 53 60 55 56 57 65 | iscauf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( ( 𝐹 ‘ 𝑦 ) 𝐷 ( 𝐹 ‘ 𝑧 ) ) < 𝑥 ) ) |
| 67 | 52 59 66 | 3bitr4rd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 68 | 67 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 : ℕ ⟶ ( 𝑋 ∩ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) ) |
| 69 | 35 68 | sylan9r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( ran 𝐹 ⊆ ( 𝑋 ∩ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) ) |
| 70 | 16 31 69 | pm5.21ndd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 : ℕ ⟶ 𝑌 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐹 ∈ ( Cau ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |