This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcompl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mhmcompl.q | ⊢ 𝑄 = ( 𝐼 mPoly 𝑆 ) | ||
| mhmcompl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mhmcompl.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | ||
| mhmcompl.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | ||
| mhmcompl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | mhmcompl | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcompl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mhmcompl.q | ⊢ 𝑄 = ( 𝐼 mPoly 𝑆 ) | |
| 3 | mhmcompl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mhmcompl.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | |
| 5 | mhmcompl.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 6 | mhmcompl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) | |
| 8 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 9 | ovexd | ⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) | |
| 10 | 8 9 | rabexd | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | 11 12 | mhmf | ⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 15 | 1 11 3 8 6 | mplelf | ⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 16 | 14 15 | fcod | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
| 17 | 7 10 16 | elmapdd | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 18 | eqid | ⊢ ( 𝐼 mPwSer 𝑆 ) = ( 𝐼 mPwSer 𝑆 ) | |
| 19 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) | |
| 20 | 1 3 | mplrcl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐼 ∈ V ) |
| 21 | 6 20 | syl | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 22 | 18 12 8 19 21 | psrbas | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 | 17 22 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ) |
| 24 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) | |
| 25 | mhmrcl1 | ⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) | |
| 26 | 5 25 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 27 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 28 | 11 27 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 26 28 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | ssidd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 31 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) | |
| 32 | 1 3 27 6 | mplelsfi | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 33 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 34 | 27 33 | mhm0 | ⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 35 | 5 34 | syl | ⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 36 | 24 29 15 14 30 10 31 32 35 | fsuppcor | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) |
| 37 | 2 18 19 33 4 | mplelbas | ⊢ ( ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ↔ ( ( 𝐻 ∘ 𝐹 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑆 ) ) ∧ ( 𝐻 ∘ 𝐹 ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 38 | 23 36 37 | sylanbrc | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |