This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcompl.p | |- P = ( I mPoly R ) |
|
| mhmcompl.q | |- Q = ( I mPoly S ) |
||
| mhmcompl.b | |- B = ( Base ` P ) |
||
| mhmcompl.c | |- C = ( Base ` Q ) |
||
| mhmcompl.h | |- ( ph -> H e. ( R MndHom S ) ) |
||
| mhmcompl.f | |- ( ph -> F e. B ) |
||
| Assertion | mhmcompl | |- ( ph -> ( H o. F ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcompl.p | |- P = ( I mPoly R ) |
|
| 2 | mhmcompl.q | |- Q = ( I mPoly S ) |
|
| 3 | mhmcompl.b | |- B = ( Base ` P ) |
|
| 4 | mhmcompl.c | |- C = ( Base ` Q ) |
|
| 5 | mhmcompl.h | |- ( ph -> H e. ( R MndHom S ) ) |
|
| 6 | mhmcompl.f | |- ( ph -> F e. B ) |
|
| 7 | fvexd | |- ( ph -> ( Base ` S ) e. _V ) |
|
| 8 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 9 | ovexd | |- ( ph -> ( NN0 ^m I ) e. _V ) |
|
| 10 | 8 9 | rabexd | |- ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | 11 12 | mhmf | |- ( H e. ( R MndHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 14 | 5 13 | syl | |- ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 15 | 1 11 3 8 6 | mplelf | |- ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 16 | 14 15 | fcod | |- ( ph -> ( H o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) |
| 17 | 7 10 16 | elmapdd | |- ( ph -> ( H o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 18 | eqid | |- ( I mPwSer S ) = ( I mPwSer S ) |
|
| 19 | eqid | |- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
|
| 20 | 1 3 | mplrcl | |- ( F e. B -> I e. _V ) |
| 21 | 6 20 | syl | |- ( ph -> I e. _V ) |
| 22 | 18 12 8 19 21 | psrbas | |- ( ph -> ( Base ` ( I mPwSer S ) ) = ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 23 | 17 22 | eleqtrrd | |- ( ph -> ( H o. F ) e. ( Base ` ( I mPwSer S ) ) ) |
| 24 | fvexd | |- ( ph -> ( 0g ` S ) e. _V ) |
|
| 25 | mhmrcl1 | |- ( H e. ( R MndHom S ) -> R e. Mnd ) |
|
| 26 | 5 25 | syl | |- ( ph -> R e. Mnd ) |
| 27 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 28 | 11 27 | mndidcl | |- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 29 | 26 28 | syl | |- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 30 | ssidd | |- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
|
| 31 | fvexd | |- ( ph -> ( Base ` R ) e. _V ) |
|
| 32 | 1 3 27 6 | mplelsfi | |- ( ph -> F finSupp ( 0g ` R ) ) |
| 33 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 34 | 27 33 | mhm0 | |- ( H e. ( R MndHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 35 | 5 34 | syl | |- ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 36 | 24 29 15 14 30 10 31 32 35 | fsuppcor | |- ( ph -> ( H o. F ) finSupp ( 0g ` S ) ) |
| 37 | 2 18 19 33 4 | mplelbas | |- ( ( H o. F ) e. C <-> ( ( H o. F ) e. ( Base ` ( I mPwSer S ) ) /\ ( H o. F ) finSupp ( 0g ` S ) ) ) |
| 38 | 23 36 37 | sylanbrc | |- ( ph -> ( H o. F ) e. C ) |