This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppcor.0 | ⊢ ( 𝜑 → 0 ∈ 𝑊 ) | |
| fsuppcor.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| fsuppcor.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) | ||
| fsuppcor.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) | ||
| fsuppcor.s | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | ||
| fsuppcor.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
| fsuppcor.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| fsuppcor.n | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | ||
| fsuppcor.i | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 0 ) | ||
| Assertion | fsuppcor | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcor.0 | ⊢ ( 𝜑 → 0 ∈ 𝑊 ) | |
| 2 | fsuppcor.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 3 | fsuppcor.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) | |
| 4 | fsuppcor.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐷 ) | |
| 5 | fsuppcor.s | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | |
| 6 | fsuppcor.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
| 7 | fsuppcor.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 8 | fsuppcor.n | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 9 | fsuppcor.i | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) = 0 ) | |
| 10 | 4 | ffund | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 11 | 3 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 12 | funco | ⊢ ( ( Fun 𝐺 ∧ Fun 𝐹 ) → Fun ( 𝐺 ∘ 𝐹 ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( 𝜑 → Fun ( 𝐺 ∘ 𝐹 ) ) |
| 14 | 8 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 15 | 4 5 | fssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |
| 16 | fco2 | ⊢ ( ( ( 𝐺 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐶 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐷 ) | |
| 17 | 15 3 16 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ 𝐷 ) |
| 18 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) → 𝑥 ∈ 𝐴 ) | |
| 19 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 20 | 3 18 19 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) | |
| 22 | 3 21 6 2 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑍 ) ) |
| 24 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( 𝐺 ‘ 𝑍 ) = 0 ) |
| 25 | 20 23 24 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 26 | 17 25 | suppss | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ⊆ ( 𝐹 supp 𝑍 ) ) |
| 27 | 14 26 | ssfid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) |
| 28 | 4 7 | fexd | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 29 | 3 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 30 | coexg | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐺 ∘ 𝐹 ) ∈ V ) | |
| 31 | 28 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) ∈ V ) |
| 32 | isfsupp | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∈ V ∧ 0 ∈ 𝑊 ) → ( ( 𝐺 ∘ 𝐹 ) finSupp 0 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) ) ) | |
| 33 | 31 1 32 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) finSupp 0 ↔ ( Fun ( 𝐺 ∘ 𝐹 ) ∧ ( ( 𝐺 ∘ 𝐹 ) supp 0 ) ∈ Fin ) ) ) |
| 34 | 13 27 33 | mpbir2and | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) finSupp 0 ) |