This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mat1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mat1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mat1ov.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mat1ov.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mat1ov.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | ||
| mat1ov.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | ||
| mat1ov.u | ⊢ 𝑈 = ( 1r ‘ 𝐴 ) | ||
| Assertion | mat1ov | ⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mat1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | mat1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mat1ov.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 5 | mat1ov.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | mat1ov.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) | |
| 7 | mat1ov.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) | |
| 8 | mat1ov.u | ⊢ 𝑈 = ( 1r ‘ 𝐴 ) | |
| 9 | 1 2 3 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 11 | 8 10 | eqtrid | ⊢ ( 𝜑 → 𝑈 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 12 | eqeq12 | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 = 𝑗 ↔ 𝐼 = 𝐽 ) ) | |
| 13 | 12 | ifbid | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
| 15 | 2 | fvexi | ⊢ 1 ∈ V |
| 16 | 3 | fvexi | ⊢ 0 ∈ V |
| 17 | 15 16 | ifex | ⊢ if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V |
| 18 | 17 | a1i | ⊢ ( 𝜑 → if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V ) |
| 19 | 11 14 6 7 18 | ovmpod | ⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |