This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | ||
| mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | ||
| mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | ||
| mdetunilem2.ph | ⊢ ( 𝜓 → 𝜑 ) | ||
| mdetunilem2.eg | ⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺 ) ) | ||
| mdetunilem2.f | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) | ||
| mdetunilem2.h | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) | ||
| Assertion | mdetunilem2 | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mdetuni.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | mdetuni.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | mdetuni.0g | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | mdetuni.1r | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | mdetuni.pg | ⊢ + = ( +g ‘ 𝑅 ) | |
| 7 | mdetuni.tg | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetuni.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 9 | mdetuni.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mdetuni.ff | ⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) | |
| 11 | mdetuni.al | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) | |
| 12 | mdetuni.li | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 13 | mdetuni.sc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) | |
| 14 | mdetunilem2.ph | ⊢ ( 𝜓 → 𝜑 ) | |
| 15 | mdetunilem2.eg | ⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺 ) ) | |
| 16 | mdetunilem2.f | ⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) | |
| 17 | mdetunilem2.h | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) | |
| 18 | 14 8 | syl | ⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
| 19 | 14 9 | syl | ⊢ ( 𝜓 → 𝑅 ∈ Ring ) |
| 20 | 16 | 3adant2 | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 21 | 20 17 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ∈ 𝐾 ) |
| 22 | 20 21 | ifcld | ⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ∈ 𝐾 ) |
| 23 | 1 3 2 18 19 22 | matbas2d | ⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ∈ 𝐵 ) |
| 24 | eqidd | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) | |
| 25 | iftrue | ⊢ ( 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = 𝐹 ) | |
| 26 | csbeq1a | ⊢ ( 𝑏 = 𝑤 → 𝐹 = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) | |
| 27 | 25 26 | sylan9eq | ⊢ ( ( 𝑎 = 𝐸 ∧ 𝑏 = 𝑤 ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 28 | 27 | adantl | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐸 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 29 | eqidd | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐸 ) → 𝑁 = 𝑁 ) | |
| 30 | 15 | simp1d | ⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐸 ∈ 𝑁 ) |
| 32 | simpr | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝑤 ∈ 𝑁 ) | |
| 33 | nfv | ⊢ Ⅎ 𝑏 ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) | |
| 34 | nfcsb1v | ⊢ Ⅎ 𝑏 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 | |
| 35 | 34 | nfel1 | ⊢ Ⅎ 𝑏 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 |
| 36 | 33 35 | nfim | ⊢ Ⅎ 𝑏 ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) |
| 37 | eleq1w | ⊢ ( 𝑏 = 𝑤 → ( 𝑏 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁 ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑏 = 𝑤 → ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) ↔ ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ) ) |
| 39 | 26 | eleq1d | ⊢ ( 𝑏 = 𝑤 → ( 𝐹 ∈ 𝐾 ↔ ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) ) |
| 40 | 38 39 | imbi12d | ⊢ ( 𝑏 = 𝑤 → ( ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) ↔ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) ) ) |
| 41 | 36 40 16 | chvarfv | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) |
| 42 | nfv | ⊢ Ⅎ 𝑎 ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) | |
| 43 | nfcv | ⊢ Ⅎ 𝑏 𝐸 | |
| 44 | nfcv | ⊢ Ⅎ 𝑎 𝑤 | |
| 45 | nfcv | ⊢ Ⅎ 𝑎 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 | |
| 46 | 24 28 29 31 32 41 42 33 43 44 45 34 | ovmpodxf | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 47 | 15 | simp3d | ⊢ ( 𝜓 → 𝐸 ≠ 𝐺 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐸 ≠ 𝐺 ) |
| 49 | neeq2 | ⊢ ( 𝑎 = 𝐺 → ( 𝐸 ≠ 𝑎 ↔ 𝐸 ≠ 𝐺 ) ) | |
| 50 | 48 49 | syl5ibrcom | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑎 = 𝐺 → 𝐸 ≠ 𝑎 ) ) |
| 51 | 50 | imp | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝐸 ≠ 𝑎 ) |
| 52 | 51 | necomd | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝑎 ≠ 𝐸 ) |
| 53 | 52 | neneqd | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → ¬ 𝑎 = 𝐸 ) |
| 54 | 53 | adantrr | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → ¬ 𝑎 = 𝐸 ) |
| 55 | 54 | iffalsed | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) |
| 56 | iftrue | ⊢ ( 𝑎 = 𝐺 → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = 𝐹 ) | |
| 57 | 56 26 | sylan9eq | ⊢ ( ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 58 | 57 | adantl | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 59 | 55 58 | eqtrd | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 60 | eqidd | ⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝑁 = 𝑁 ) | |
| 61 | 15 | simp2d | ⊢ ( 𝜓 → 𝐺 ∈ 𝑁 ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐺 ∈ 𝑁 ) |
| 63 | nfcv | ⊢ Ⅎ 𝑏 𝐺 | |
| 64 | 24 59 60 62 32 41 42 33 63 44 45 34 | ovmpodxf | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
| 65 | 46 64 | eqtr4d | ⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) |
| 66 | 65 | ralrimiva | ⊢ ( 𝜓 → ∀ 𝑤 ∈ 𝑁 ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) |
| 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | mdetunilem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) ∧ ( 𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺 ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) = 0 ) |
| 68 | 14 23 66 15 67 | syl31anc | ⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) = 0 ) |