This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: * Induction step for mccl . (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mccllem.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| mccllem.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| mccllem.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) ) | ||
| mccllem.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) ) | ||
| mccllem.6 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐶 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) | ||
| Assertion | mccllem | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mccllem.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | mccllem.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | mccllem.d | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) ) | |
| 4 | mccllem.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) ) | |
| 5 | mccllem.6 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐶 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) | |
| 6 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 7 | nfcv | ⊢ Ⅎ 𝑘 ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) | |
| 8 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ∈ Fin ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 10 | eldifn | ⊢ ( 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝐷 ∈ 𝐶 ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → ¬ 𝐷 ∈ 𝐶 ) |
| 12 | elmapi | ⊢ ( 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐵 : ( 𝐶 ∪ { 𝐷 } ) ⟶ ℕ0 ) |
| 15 | elun1 | ⊢ ( 𝑘 ∈ 𝐶 → 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 17 | 14 16 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 18 | 17 | faccld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 19 | 18 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 20 | 2fveq3 | ⊢ ( 𝑘 = 𝐷 → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) | |
| 21 | snidg | ⊢ ( 𝐷 ∈ ( 𝐴 ∖ 𝐶 ) → 𝐷 ∈ { 𝐷 } ) | |
| 22 | 3 21 | syl | ⊢ ( 𝜑 → 𝐷 ∈ { 𝐷 } ) |
| 23 | elun2 | ⊢ ( 𝐷 ∈ { 𝐷 } → 𝐷 ∈ ( 𝐶 ∪ { 𝐷 } ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ∪ { 𝐷 } ) ) |
| 25 | 13 24 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℕ0 ) |
| 26 | 25 | faccld | ⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ∈ ℕ ) |
| 27 | 26 | nncnd | ⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ∈ ℂ ) |
| 28 | 6 7 9 3 11 19 20 27 | fprodsplitsn | ⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) = ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) |
| 30 | 3 | eldifad | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
| 31 | snssi | ⊢ ( 𝐷 ∈ 𝐴 → { 𝐷 } ⊆ 𝐴 ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → { 𝐷 } ⊆ 𝐴 ) |
| 33 | 2 32 | unssd | ⊢ ( 𝜑 → ( 𝐶 ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 34 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐶 ∪ { 𝐷 } ) ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝐷 } ) ∈ Fin ) | |
| 35 | 1 33 34 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∪ { 𝐷 } ) ∈ Fin ) |
| 36 | 13 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 37 | 35 36 | fsumnn0cl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 38 | 37 | faccld | ⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 39 | 38 | nncnd | ⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 40 | 6 9 19 | fprodclf | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 41 | 40 27 | mulcld | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 42 | 18 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 43 | 9 19 42 | fprodn0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 44 | 26 | nnne0d | ⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ≠ 0 ) |
| 45 | 40 27 43 44 | mulne0d | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ≠ 0 ) |
| 46 | 39 41 45 | divcld | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
| 47 | 46 | mullidd | ⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) |
| 48 | 47 | eqcomd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) ) |
| 49 | 9 17 | fsumnn0cl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℕ0 ) |
| 50 | 49 | faccld | ⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 51 | 50 | nncnd | ⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℂ ) |
| 52 | nnne0 | ⊢ ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) | |
| 53 | 50 52 | syl | ⊢ ( 𝜑 → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ≠ 0 ) |
| 54 | 51 53 | dividd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = 1 ) |
| 55 | 54 | eqcomd | ⊢ ( 𝜑 → 1 = ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 56 | 40 27 | mulcomd | ⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) = ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 58 | 39 27 40 44 43 | divdiv1d | ⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 59 | 58 | eqcomd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 61 | 55 60 | oveq12d | ⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 62 | 39 27 44 | divcld | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ∈ ℂ ) |
| 63 | 51 51 62 40 53 43 | divmul13d | ⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 64 | 61 63 | eqtrd | ⊢ ( 𝜑 → ( 1 · ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) · ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 65 | 29 48 64 | 3eqtrd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 66 | 39 27 51 44 53 | divdiv1d | ⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 67 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) | |
| 68 | 17 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 69 | csbeq1a | ⊢ ( 𝑘 = 𝐷 → ( 𝐵 ‘ 𝑘 ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) | |
| 70 | csbfv | ⊢ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝐷 ) | |
| 71 | 70 | a1i | ⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝐷 ) ) |
| 72 | 25 | nn0cnd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℂ ) |
| 73 | 71 72 | eqeltrd | ⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 74 | 6 67 9 30 11 68 69 73 | fsumsplitsn | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) = ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) |
| 75 | 74 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 76 | 49 | nn0cnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 77 | 76 73 | pncan2d | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 78 | 75 77 71 | 3eqtrrd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 79 | 78 | fveq2d | ⊢ ( 𝜑 → ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) = ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 80 | 79 | oveq1d | ⊢ ( 𝜑 → ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 81 | 80 | oveq2d | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 82 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 83 | 37 | nn0zd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ∈ ℤ ) |
| 84 | 49 | nn0zd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℤ ) |
| 85 | 49 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) |
| 86 | 25 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 ‘ 𝐷 ) ) |
| 87 | 71 | eqcomd | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) = ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 88 | 86 87 | breqtrd | ⊢ ( 𝜑 → 0 ≤ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) |
| 89 | 49 | nn0red | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 90 | 25 | nn0red | ⊢ ( 𝜑 → ( 𝐵 ‘ 𝐷 ) ∈ ℝ ) |
| 91 | 71 90 | eqeltrd | ⊢ ( 𝜑 → ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 92 | 89 91 | addge01d | ⊢ ( 𝜑 → ( 0 ≤ ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ↔ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 93 | 88 92 | mpbid | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) ) |
| 94 | 74 | eqcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) + ⦋ 𝐷 / 𝑘 ⦌ ( 𝐵 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) |
| 95 | 93 94 | breqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) |
| 96 | 82 83 84 85 95 | elfzd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) ) |
| 97 | bcval2 | ⊢ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 99 | 98 | eqcomd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ( ! ‘ ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 100 | 66 81 99 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 101 | bccl2 | ⊢ ( Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ∈ ( 0 ... Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) | |
| 102 | 96 101 | syl | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) C Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ∈ ℕ ) |
| 103 | 100 102 | eqeltrd | ⊢ ( 𝜑 → ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 104 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) | |
| 105 | 104 | a1i | ⊢ ( 𝜑 → 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) |
| 106 | elmapssres | ⊢ ( ( 𝐵 ∈ ( ℕ0 ↑m ( 𝐶 ∪ { 𝐷 } ) ) ∧ 𝐶 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) | |
| 107 | 4 105 106 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) |
| 108 | fveq1 | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) ) | |
| 109 | 108 | adantr | ⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) ) |
| 110 | fvres | ⊢ ( 𝑘 ∈ 𝐶 → ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) | |
| 111 | 110 | adantl | ⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐵 ↾ 𝐶 ) ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 112 | 109 111 | eqtrd | ⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 113 | 112 | sumeq2dv | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) |
| 114 | 113 | fveq2d | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) |
| 115 | 112 | fveq2d | ⊢ ( ( 𝑏 = ( 𝐵 ↾ 𝐶 ) ∧ 𝑘 ∈ 𝐶 ) → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 116 | 115 | prodeq2dv | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 117 | 114 116 | oveq12d | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 118 | 117 | eleq1d | ⊢ ( 𝑏 = ( 𝐵 ↾ 𝐶 ) → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 119 | 118 | rspccva | ⊢ ( ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐶 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ∧ ( 𝐵 ↾ 𝐶 ) ∈ ( ℕ0 ↑m 𝐶 ) ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 120 | 5 107 119 | syl2anc | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 121 | 103 120 | nnmulcld | ⊢ ( 𝜑 → ( ( ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ( ! ‘ ( 𝐵 ‘ 𝐷 ) ) ) / ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) ) · ( ( ! ‘ Σ 𝑘 ∈ 𝐶 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐶 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) ∈ ℕ ) |
| 122 | 65 121 | eqeltrd | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝐶 ∪ { 𝐷 } ) ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |