This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mccl.kb | ⊢ Ⅎ 𝑘 𝐵 | |
| mccl.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| mccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m 𝐴 ) ) | ||
| Assertion | mccl | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mccl.kb | ⊢ Ⅎ 𝑘 𝐵 | |
| 2 | mccl.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | mccl.b | ⊢ ( 𝜑 → 𝐵 ∈ ( ℕ0 ↑m 𝐴 ) ) | |
| 4 | sumeq1 | ⊢ ( 𝑎 = ∅ → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑎 = ∅ → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) ) |
| 6 | prodeq1 | ⊢ ( 𝑎 = ∅ → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | |
| 7 | 5 6 | oveq12d | ⊢ ( 𝑎 = ∅ → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝑎 = ∅ → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 10 | oveq2 | ⊢ ( 𝑎 = ∅ → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m ∅ ) ) | |
| 11 | 10 | raleqdv | ⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 12 | 9 11 | bitrd | ⊢ ( 𝑎 = ∅ → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 13 | sumeq1 | ⊢ ( 𝑎 = 𝑐 → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑎 = 𝑐 → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) ) |
| 15 | prodeq1 | ⊢ ( 𝑎 = 𝑐 → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑎 = 𝑐 → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑎 = 𝑐 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 18 | 17 | ralbidv | ⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 19 | oveq2 | ⊢ ( 𝑎 = 𝑐 → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m 𝑐 ) ) | |
| 20 | 19 | raleqdv | ⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 21 | 18 20 | bitrd | ⊢ ( 𝑎 = 𝑐 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 22 | sumeq1 | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) ) |
| 24 | prodeq1 | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | |
| 25 | 23 24 | oveq12d | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 26 | 25 | eleq1d | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 28 | oveq2 | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) | |
| 29 | 28 | raleqdv | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 30 | 27 29 | bitrd | ⊢ ( 𝑎 = ( 𝑐 ∪ { 𝑑 } ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 31 | sumeq1 | ⊢ ( 𝑎 = 𝐴 → Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) | |
| 32 | 31 | fveq2d | ⊢ ( 𝑎 = 𝐴 → ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) ) |
| 33 | prodeq1 | ⊢ ( 𝑎 = 𝐴 → ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) | |
| 34 | 32 33 | oveq12d | ⊢ ( 𝑎 = 𝐴 → ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ) |
| 35 | 34 | eleq1d | ⊢ ( 𝑎 = 𝐴 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 37 | oveq2 | ⊢ ( 𝑎 = 𝐴 → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m 𝐴 ) ) | |
| 38 | 37 | raleqdv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 39 | 36 38 | bitrd | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑎 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑎 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑎 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 40 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) = 0 | |
| 41 | 40 | fveq2i | ⊢ ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ 0 ) |
| 42 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 43 | 41 42 | eqtri | ⊢ ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) = 1 |
| 44 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = 1 | |
| 45 | 43 44 | oveq12i | ⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( 1 / 1 ) |
| 46 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 47 | 45 46 | eqtri | ⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = 1 |
| 48 | 1nn | ⊢ 1 ∈ ℕ | |
| 49 | 47 48 | eqeltri | ⊢ ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ |
| 50 | 49 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ) → ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m ∅ ) ( ( ! ‘ Σ 𝑘 ∈ ∅ ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ∅ ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 52 | nfv | ⊢ Ⅎ 𝑏 ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) | |
| 53 | nfra1 | ⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ | |
| 54 | 52 53 | nfan | ⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 55 | simpll | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ) | |
| 56 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝑏 ‘ 𝑘 ) = ( 𝑏 ‘ 𝑗 ) ) | |
| 57 | 56 | cbvsumv | ⊢ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) |
| 58 | 57 | a1i | ⊢ ( 𝑏 = 𝑒 → Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) ) |
| 59 | fveq1 | ⊢ ( 𝑏 = 𝑒 → ( 𝑏 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑗 ) ) | |
| 60 | 59 | sumeq2sdv | ⊢ ( 𝑏 = 𝑒 → Σ 𝑗 ∈ 𝑐 ( 𝑏 ‘ 𝑗 ) = Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) |
| 61 | 58 60 | eqtrd | ⊢ ( 𝑏 = 𝑒 → Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) = Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) |
| 62 | 61 | fveq2d | ⊢ ( 𝑏 = 𝑒 → ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) ) |
| 63 | 2fveq3 | ⊢ ( 𝑘 = 𝑗 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) | |
| 64 | 63 | cbvprodv | ⊢ ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) |
| 65 | 64 | a1i | ⊢ ( 𝑏 = 𝑒 → ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) ) |
| 66 | 59 | fveq2d | ⊢ ( 𝑏 = 𝑒 → ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) = ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
| 67 | 66 | prodeq2ad | ⊢ ( 𝑏 = 𝑒 → ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑗 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
| 68 | 65 67 | eqtrd | ⊢ ( 𝑏 = 𝑒 → ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) |
| 69 | 62 68 | oveq12d | ⊢ ( 𝑏 = 𝑒 → ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ) |
| 70 | 69 | eleq1d | ⊢ ( 𝑏 = 𝑒 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ) |
| 71 | 70 | cbvralvw | ⊢ ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
| 72 | 71 | biimpi | ⊢ ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
| 73 | 72 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) |
| 74 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) | |
| 75 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝐴 ∈ Fin ) |
| 76 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → 𝑐 ⊆ 𝐴 ) | |
| 77 | 76 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑐 ⊆ 𝐴 ) |
| 78 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) | |
| 79 | 78 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) |
| 80 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) | |
| 81 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑒 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑘 ) ) | |
| 82 | 81 | cbvsumv | ⊢ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) |
| 83 | 82 | fveq2i | ⊢ ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) |
| 84 | 2fveq3 | ⊢ ( 𝑗 = 𝑘 → ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) = ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) | |
| 85 | 84 | cbvprodv | ⊢ ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) |
| 86 | 83 85 | oveq12i | ⊢ ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) |
| 87 | 86 | eleq1i | ⊢ ( ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 88 | 87 | ralbii | ⊢ ( ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ↔ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 89 | 88 | biimpi | ⊢ ( ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 90 | 89 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑒 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 91 | 75 77 79 80 90 | mccllem | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑒 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑗 ∈ 𝑐 ( 𝑒 ‘ 𝑗 ) ) / ∏ 𝑗 ∈ 𝑐 ( ! ‘ ( 𝑒 ‘ 𝑗 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 92 | 55 73 74 91 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ∧ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 93 | 92 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) → ( 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) → ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 94 | 54 93 | ralrimi | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) ∧ ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) → ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 95 | 94 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑐 ⊆ 𝐴 ∧ 𝑑 ∈ ( 𝐴 ∖ 𝑐 ) ) ) → ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝑐 ) ( ( ! ‘ Σ 𝑘 ∈ 𝑐 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝑐 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ → ∀ 𝑏 ∈ ( ℕ0 ↑m ( 𝑐 ∪ { 𝑑 } ) ) ( ( ! ‘ Σ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ ( 𝑐 ∪ { 𝑑 } ) ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 96 | 12 21 30 39 51 95 2 | findcard2d | ⊢ ( 𝜑 → ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 97 | nfcv | ⊢ Ⅎ 𝑘 𝑏 | |
| 98 | 97 1 | nfeq | ⊢ Ⅎ 𝑘 𝑏 = 𝐵 |
| 99 | fveq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) | |
| 100 | 99 | a1d | ⊢ ( 𝑏 = 𝐵 → ( 𝑘 ∈ 𝐴 → ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) ) |
| 101 | 98 100 | ralrimi | ⊢ ( 𝑏 = 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 102 | 101 | sumeq2d | ⊢ ( 𝑏 = 𝐵 → Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) |
| 103 | 102 | fveq2d | ⊢ ( 𝑏 = 𝐵 → ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) ) |
| 104 | 99 | fveq2d | ⊢ ( 𝑏 = 𝐵 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 105 | 104 | a1d | ⊢ ( 𝑏 = 𝐵 → ( 𝑘 ∈ 𝐴 → ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 106 | 98 105 | ralrimi | ⊢ ( 𝑏 = 𝐵 → ∀ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 107 | 106 | prodeq2d | ⊢ ( 𝑏 = 𝐵 → ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 108 | 103 107 | oveq12d | ⊢ ( 𝑏 = 𝐵 → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) = ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 109 | 108 | eleq1d | ⊢ ( 𝑏 = 𝐵 → ( ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ↔ ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) ) |
| 110 | 109 | rspccva | ⊢ ( ( ∀ 𝑏 ∈ ( ℕ0 ↑m 𝐴 ) ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝑏 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝑏 ‘ 𝑘 ) ) ) ∈ ℕ ∧ 𝐵 ∈ ( ℕ0 ↑m 𝐴 ) ) → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |
| 111 | 96 3 110 | syl2anc | ⊢ ( 𝜑 → ( ( ! ‘ Σ 𝑘 ∈ 𝐴 ( 𝐵 ‘ 𝑘 ) ) / ∏ 𝑘 ∈ 𝐴 ( ! ‘ ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℕ ) |