This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapssres | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐴 : 𝐶 ⟶ 𝐵 ) | |
| 2 | fssres | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐵 ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) |
| 4 | elmapex | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) | |
| 5 | 4 | simpld | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐵 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → 𝐵 ∈ V ) |
| 7 | 4 | simprd | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐶 ∈ V ) |
| 8 | ssexg | ⊢ ( ( 𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V ) → 𝐷 ∈ V ) | |
| 9 | 8 | ancoms | ⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶 ) → 𝐷 ∈ V ) |
| 10 | 7 9 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → 𝐷 ∈ V ) |
| 11 | 6 10 | elmapd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) ↔ ( 𝐴 ↾ 𝐷 ) : 𝐷 ⟶ 𝐵 ) ) |
| 12 | 3 11 | mpbird | ⊢ ( ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ∧ 𝐷 ⊆ 𝐶 ) → ( 𝐴 ↾ 𝐷 ) ∈ ( 𝐵 ↑m 𝐷 ) ) |