This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplitsn.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| fsumsplitsn.kd | ⊢ Ⅎ 𝑘 𝐷 | ||
| fsumsplitsn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumsplitsn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| fsumsplitsn.ba | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐴 ) | ||
| fsumsplitsn.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| fsumsplitsn.d | ⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐷 ) | ||
| fsumsplitsn.dcn | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| Assertion | fsumsplitsn | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplitsn.ph | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | fsumsplitsn.kd | ⊢ Ⅎ 𝑘 𝐷 | |
| 3 | fsumsplitsn.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | fsumsplitsn.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 5 | fsumsplitsn.ba | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐴 ) | |
| 6 | fsumsplitsn.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 7 | fsumsplitsn.d | ⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐷 ) | |
| 8 | fsumsplitsn.dcn | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 9 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) | |
| 10 | 5 9 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ∩ { 𝐵 } ) = ∅ ) |
| 11 | eqidd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) ) | |
| 12 | snfi | ⊢ { 𝐵 } ∈ Fin | |
| 13 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ∈ Fin ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) | |
| 14 | 3 12 13 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) |
| 15 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 16 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝜑 ) | |
| 17 | elunnel1 | ⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ { 𝐵 } ) | |
| 18 | elsni | ⊢ ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
| 20 | 19 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
| 21 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 23 | 21 22 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 ∈ ℂ ) |
| 24 | 16 20 23 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 25 | 15 24 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 𝐶 ∈ ℂ ) |
| 26 | 1 10 11 14 25 | fsumsplitf | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 27 | 2 7 | sumsnf | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
| 28 | 4 8 27 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 + 𝐷 ) ) |
| 30 | 26 29 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + 𝐷 ) ) |