This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodn0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodn0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fprodn0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | ||
| Assertion | fprodn0 | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodn0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodn0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | fprodn0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) | |
| 4 | prodeq1 | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) | |
| 5 | prod0 | ⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 7 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 8 | 7 | a1i | ⊢ ( 𝐴 = ∅ → 1 ≠ 0 ) |
| 9 | 6 8 | eqnetrd | ⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 11 | prodfc | ⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐵 | |
| 12 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 13 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 14 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 15 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 18 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 19 | 14 18 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 20 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 21 | 19 20 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 22 | 12 13 14 17 21 | fprod | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 23 | 11 22 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 24 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 25 | 13 24 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 27 | 16 19 26 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℂ ) |
| 29 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) | |
| 30 | 19 29 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 31 | 18 | ffvelcdmda | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 32 | 31 | adantll | ⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) | |
| 34 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑓 ‘ 𝑚 ) | |
| 35 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 36 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 | |
| 37 | 36 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 38 | 35 37 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 39 | csbeq1a | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 41 | 40 | imbi2d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ∈ ℂ ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 42 | 2 | expcom | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ∈ ℂ ) ) |
| 43 | 34 38 41 42 | vtoclgaf | ⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 44 | 43 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 45 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 46 | 45 | fvmpts | ⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ∧ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 47 | 33 44 46 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 48 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 49 | 36 48 | nfne | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 |
| 50 | 35 49 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
| 51 | 39 | neeq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ≠ 0 ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
| 52 | 51 | imbi2d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ≠ 0 ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) ) |
| 53 | 3 | expcom | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ≠ 0 ) ) |
| 54 | 34 50 52 53 | vtoclgaf | ⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
| 55 | 54 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
| 56 | 47 55 | eqnetrd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 57 | 32 56 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 58 | 57 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 59 | 30 58 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ≠ 0 ) |
| 60 | 25 28 59 | prodfn0 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ≠ 0 ) |
| 61 | 23 60 | eqnetrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 62 | 61 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 63 | 62 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 64 | 63 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 65 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 66 | 1 65 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 67 | 10 64 66 | mpjaod | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |