This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| mbfmul.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| mbfmul.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | ||
| mbfmul.5 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | ||
| mbfmul.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | ||
| mbfmul.7 | ⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) | ||
| mbfmul.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | mbfmullem2 | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 3 | mbfmul.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 4 | mbfmul.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | |
| 5 | mbfmul.5 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | |
| 6 | mbfmul.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 7 | mbfmul.7 | ⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) | |
| 8 | mbfmul.8 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) | |
| 9 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 10 | 4 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 11 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 12 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 14 | 11 13 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 15 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 16 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 17 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 18 | 9 10 14 14 15 16 17 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 20 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 21 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℤ ) | |
| 22 | nnex | ⊢ ℕ ∈ V | |
| 23 | 22 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ V ) |
| 25 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 26 | i1ff | ⊢ ( ( 𝑃 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 29 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 30 | 14 29 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 31 | 30 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 33 | 28 32 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 34 | 33 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 35 | 34 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 36 | 35 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 37 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 38 | i1ff | ⊢ ( ( 𝑄 ‘ 𝑛 ) ∈ dom ∫1 → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 40 | 39 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 41 | 40 32 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℝ ) |
| 42 | 41 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 43 | 42 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) : ℕ ⟶ ℂ ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 45 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 46 | 45 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 47 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑄 ‘ 𝑛 ) = ( 𝑄 ‘ 𝑘 ) ) | |
| 48 | 47 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 49 | 46 48 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 50 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) | |
| 51 | ovex | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ V | |
| 52 | 49 50 51 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 54 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 55 | fvex | ⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 56 | 46 54 55 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 57 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 58 | fvex | ⊢ ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ∈ V | |
| 59 | 48 57 58 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) = ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) |
| 60 | 56 59 | oveq12d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) = ( ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑘 ) ‘ 𝑥 ) ) ) |
| 62 | 53 61 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) · ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ‘ 𝑘 ) ) ) |
| 63 | 19 21 6 24 8 36 44 62 | climmul | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ⇝ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 64 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
| 65 | 64 | resmptd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 66 | 27 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ‘ 𝑛 ) Fn ℝ ) |
| 67 | 39 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑄 ‘ 𝑛 ) Fn ℝ ) |
| 68 | reex | ⊢ ℝ ∈ V | |
| 69 | 68 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ℝ ∈ V ) |
| 70 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 71 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 72 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 73 | 66 67 69 69 70 71 72 | offval | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ) |
| 74 | 25 37 | i1fmul | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 ) |
| 75 | i1fmbf | ⊢ ( ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ dom ∫1 → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) | |
| 76 | 74 75 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑛 ) ∘f · ( 𝑄 ‘ 𝑛 ) ) ∈ MblFn ) |
| 77 | 73 76 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 78 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) |
| 79 | mbfres | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) | |
| 80 | 77 78 79 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ∈ ℝ ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ↾ 𝐴 ) ∈ MblFn ) |
| 81 | 65 80 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∈ 𝐴 ↦ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 82 | ovex | ⊢ ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V | |
| 83 | 82 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ 𝐴 ) ) → ( ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) · ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ V ) |
| 84 | 19 20 63 81 83 | mbflim | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 85 | 18 84 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |