This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| Assertion | mbfmul | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 3 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 5 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
| 6 | mbff | ⊢ ( 𝐺 ∈ MblFn → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 8 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn dom 𝐺 ) |
| 9 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 11 | mbfdm | ⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) | |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
| 13 | eqid | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) | |
| 14 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 15 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 16 | 5 8 10 12 13 14 15 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 | elinel1 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) | |
| 18 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 19 | 4 17 18 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 20 | elinel2 | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) | |
| 21 | ffvelcdm | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) | |
| 22 | 7 20 21 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 23 | 19 22 | remuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 24 | 23 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 25 | inmbl | ⊢ ( ( dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol ) → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) | |
| 26 | 10 12 25 | syl2anc | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) |
| 27 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 28 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 29 | 19 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 30 | 22 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 31 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 32 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 33 | 26 29 30 31 32 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 34 | 19 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 35 | 22 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 36 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 37 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 38 | 26 34 35 36 37 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 39 | 26 27 28 33 38 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) − ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 40 | 24 39 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 41 | inss1 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 | |
| 42 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 43 | 41 42 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 44 | 4 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | 44 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 46 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 47 | 45 26 46 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 48 | 43 47 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 49 | 19 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 50 | 48 49 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 51 | 50 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 52 | inss2 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 | |
| 53 | resmpt | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 54 | 52 53 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) |
| 55 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 56 | 55 2 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 57 | mbfres | ⊢ ( ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ∧ ( dom 𝐹 ∩ dom 𝐺 ) ∈ dom vol ) → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) | |
| 58 | 56 26 57 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ∈ MblFn ) |
| 59 | 54 58 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ) |
| 60 | 22 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 61 | 59 60 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 62 | 61 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 63 | 29 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 64 | 30 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 65 | 51 62 63 64 | mbfmullem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 66 | 50 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 67 | 61 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 68 | 34 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 69 | 35 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℝ ) |
| 70 | 66 67 68 69 | mbfmullem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 71 | 65 70 | mbfsub | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f − ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ∈ MblFn ) |
| 72 | 40 71 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 73 | 19 22 | immuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 74 | 73 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 75 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 76 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 77 | 26 29 35 31 37 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 78 | 26 34 30 36 32 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 79 | 26 75 76 77 78 | offval2 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) + ( ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) · ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 80 | 74 79 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ) |
| 81 | 51 67 63 69 | mbfmullem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 82 | 66 62 68 64 | mbfmullem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 83 | 81 82 | mbfadd | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ∘f + ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) ∈ MblFn ) |
| 84 | 80 83 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 85 | 19 22 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 86 | 85 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℜ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ℑ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
| 87 | 72 84 86 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 88 | 16 87 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |