This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfmul . (Contributed by Mario Carneiro, 7-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| mbfmul.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| mbfmul.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | ||
| Assertion | mbfmullem | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmul.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfmul.2 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 3 | mbfmul.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 4 | mbfmul.4 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℝ ) | |
| 5 | 1 3 | mbfi1flim | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
| 6 | 2 4 | mbfi1flim | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) |
| 7 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 ∈ MblFn ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 ∈ MblFn ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝐺 : 𝐴 ⟶ ℝ ) |
| 12 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑓 : ℕ ⟶ dom ∫1 ) | |
| 13 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 15 | 14 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) | |
| 17 | 16 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 18 | 17 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 19 | 15 18 | eqtrdi | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 23 | 13 22 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) |
| 24 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) | |
| 25 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 27 | 26 | mpteq2dv | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) | |
| 29 | 28 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 30 | 29 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 31 | 27 30 | eqtrdi | ⊢ ( 𝑦 = 𝑥 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 32 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 33 | 31 32 | breq12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) |
| 34 | 33 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 35 | 25 34 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑚 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 36 | 8 9 10 11 12 23 24 35 | mbfmullem2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |
| 37 | 36 | ex | ⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
| 38 | 37 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
| 39 | 7 38 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) ) |
| 40 | 5 6 39 | mp2and | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ MblFn ) |